

Final Report

Matthew R Peyton

This Document is The Final Report for 5th year senior thesis in the Architectural Engineering Department at The Pennsylvania State University.

Structural Option Professor Behr Hospital Patient Tower Virginia, U.S.A. 4/7/2011

Matthew Peyton

Structural Option

Turner Construction

Cagley & Associates

RMF Engineering INC.

Dewberry & Davis

Wilmot/Sanz

East Coast U.S.A.

General Building Statistics

ize:	216,000 SF
lumber of stories:	12 Above Grad
lost:	\$161 Million
Ourations of	Summer 2010
Construction:	
elivery Method:	Design-Bid-Bu

Project Teams

General Contractor

Structural Engineer

Civil Engineer

MEP Engineer

Architecture

- 174 private intensive care and medical/surgical rooms.
- 360° patient access for improved care.
- Two story atrium connected to the lobby with a living roof.
- Cantilevered aluminum lovers with glazing as lobby canopy.
- Precast concrete exterior façade with curtain wall sections.

Mechanical

- 5th Floor mechanical space.
- Five fan cooled AC units.
- Four steam boilers.
- One central and 4 exterior building mechanical risers.
- Stairwell pressurization fan 10,000 CFM.

Structural

-Fall 2012

ld

• Foundations of piles and grade beams with a 5" S.O.G.

Architect

- 9 1/2" Flat plate concrete slab with 2 way steel reinforcing
- Concrete columns with drop panels and edge beams.
- 12" thick concrete shear wall in 7 locations.
- 9 1/2" Flat plate concrete roof slab with Helipad supports .
- 14" Penthouse Slab with steel reinforcing.
- ▶ 1 1/2" Metal roof deck on wide flange steel for penthouse connection.

Electrical/Lighting

- Two 2000 KVA transformers provided by DVP.
 - 2000 KW Generation feeding a 2000KVA transformer for Emergence back-up.
 - 277 V lighting system mostly fluorescent with specialty lighting where needed.

http://www.engr.psu.edu/ae/thesis/portfolios/2011/mrp5082/index.html

Table of Contents

Executive Summary	4
Acknowledgment's	5
The Pennsylvania State University	5
Outside Consultants	5
Introduction	6
Existing Structural Systems	7
Foundations	7
Columns	8
Floor System	
Roof System	
Lateral System	
Design & Code Review	
Design Codes and References	13
Thesis Codes and References	13
Deflection Criteria	
Floor Deflection Criteria	
Lateral Drift Criteria	13
Load Combinations	14
Material Specifications	14
Gravity Loads	
Lateral Loads	
Wind Loads	16
Seismic Loads	
Proposal Problem Statement	
Problem Solution	20
Breadth Topics	20
Redesigned Structural System	21
Columns	21
Floor System	23
Lateral System	25

Controlling lateral loads27
Relative Stiffness
Center of Mass and Center of Rigidity29
Torsion
Shear
Overturning
Displacement
Structural Depth Summary
Breath Topic #1
Schedule Impacts
Cost Impacts
Breath Topic #2
Acoustical Analysis
Design Goals
Conclusion
Appendix I40
Appendix II
Appendix III61
Appendix IV

Executive Summary

The Hospital Patient Tower is a 12 story expansion to an existing patient tower. This is one of early steps of a large capital expansion plan. This tower utilizes piles and grade beams as a foundation with a concrete structural system. Typical column size is 24" x 24" with varying rebar placement and design of both vertical and horizontal. The new Patient Tower will connect with an existing patient tower by a bank of elevators and will also await the connection of a women's health facility that is one of the next phases of the Capital Improvement Project. Since the Patient Tower needs to line up with the existing structure the floor to floor high is a major consideration in the structural design.

For this thesis report, the goal was to investigate and discuss the effects of redesigning the structural system for the patient tower from its original cast-in-place concrete system to a steel frame system. While redesigning the structural system it was necessary to maintain the architectural plan as to not affect the functionality of the hospital. The two-way concrete slab with concrete shear wall cores was redesigned to a steel frame with "X" bracing. This new system is known as girder-slab and uses a modified wide flange to create a composite action between the precast plank and the wide flanged steel. Preliminary framing elements were sized using the AISC 13th edition Steel Construction Manual and the Girder-Slab Design Guide. An Etabs model was created to design the lateral force resisting system using calculated wind and seismic loads from ASCE 7 -10.

Two breadth studies were conducted for this report to determine how the structural redesign affects other aspects of the building. The first breath topic is a construction management analysis which was performed to investigate and compare the cost and schedule of the existing concrete structure and the proposed steel frame structure. The schedule was compared using R.S. Means construction cost data, an estimated schedule was generated using time acquired from labor crews and unit amounts. From this study it was concluded that both designs have their pros and cons and both of these structures are feasible options for the Hospital Patient Tower.

The second breadth study was an acoustical study to analyze the Sound Transmission Class (STC) and Impact Insulation Class (IIC) for the two Intensive Care Units (ICU) and there adjacent spaces. Both of the towers ICU units are located either above or below a potential noise source. The regular ICU is located above the towers café which will have a large amount of air borne sound and the Nero ICU is located below the mechanical level on the fifth floor which will have high structural borne noise. These two

spaces were check for their specific type of noise so that it does not disturb the occupants. In both cases the existing elements of the design were able to meet the criteria needed for the spaces.

Figure 1: Rendering by Wilmot Sanz

Acknowledgment's

I would like to thank the following individuals and companies for the steadfast support they offered throughout the duration of the thesis process. Without their help, this would not have been possible.

The Pennsylvania State University

Professor Bob Holland – Senior Thesis Instructor

Professor Kevin Parfitt – Senior Thesis Instructor

Professor Richard Behr – AE faculty consultant

The Faculty and Staff of the Penn State AE department

Outside Consultants

Frank Malits – Cagley & Associates

Joan Dannemann – Inova Design and Construction Department

I would like to give a special thanks to the professionals at both, Cagley & Associates for sponsoring my thesis project, and, Inova Design and Construction Department for their permission to use The Patient Tower as the subject of my study.

Lastly, I would like to extend my gratitude to my family and friends for their unconditional support and encouragement.

Introduction

The Patient Tower is part of the 2015 Capital Improvement Project, of which the Tower Expansion is one of the earlier phases. The new Patient Tower will connect with an existing patient tower by a bank of elevators separated into two sections, one for visitors and the other for patients on every floor. The Tower will also await the connection of a women's health facility that is one of the next phases of the Capital Improvement Project. The Façade of the Patient Tower will blend in with the existing buildings by tying in some of the red brick on the exterior walls, while also taking on a more modern look by incorporating an aluminum curtain wall and precast concrete panels. The new tower consists of 12 stories above grade with one level below grade. The patient tower is 216,000 square feet with 174 patient rooms, an operation area and a mechanical level. The contract for this tower was awarded to Turner Construction, the general contractor, in a Design-Bid-Build method with a contract value of \$161 million.

One of the main design considerations is individual patient rooms. Based on the hospital's goals for care, the individual patient rooms were a large factor in the design of the floor plan. During the design phases the project team requested input from the physicians, nurses and staff to help make the design as efficient as possible. Medical/surgical patients aged 65 years and older were the focus of this tower, with a special emphasis on their safety and a good healing environment. With the hospital teams input, the placements for monitoring stations were optimized to ensure patient privacy as well as enhancing the monitoring capabilities.

One of the hospital's goals, along with excellent patient care, is also to lower the hospital's impact on the environment. The hospital's plan for this new tower included green features such as living roofs, low flow water fixtures, and rain gardens. The design also calls for no/low VOC building materials to be used in construction of the tower. The tower design has been submitted for a LEED Silver Certification.

Figure 2: Sketch by Wilmot Sanz

Existing Structural Systems

Foundations

The geotechnical report was prepared by Schnabel Engineering, LLC, on March 25, 2010. The foundation of the patient tower is set on piles, with pile caps and grade beams. Each column location has a range of 4 to 12 piles. The slab on grade for the tower is 5" with integrated slab pile caps in locations of high stress, such as the elevator shaft and stair well. During the excavation for the new tower the existing basement and caissons supporting the connecting structure were exposed seen in figure 3. The existing 66" caissons will not support the new tower but some force will be added with the connection of the new tower. In a few locations where no basement exists, piles were placed to reach up to the ground floor level to support irregular building features.

Columns

The column layout of the patient tower is very regular with a few variations on the 1st through 3rd floors. The bay spacing in the patient tower is mostly square 29' x 29' with a few exceptions as see in Figure 6. The columns are reinforced concrete ranging in size from 30" x 30" to 12" x 18". The typical column size is 24" x 24" with vertical reinforcing of #11 bars numbering from 4 bars to 12 bars as they move through the structure. The vertical reinforcing is tied together with #4 bars placed every 18" as seen in Figure 5. The columns on the basement level up through the 4th floor are poured with 7,000 psi concrete and from the 5th floor up they are 5,000 psi concrete. The structural system of the Patient Tower utilizes column capitals to resist punching shear within the slab. The typical capital in the tower is 10' x 10' x 6" depth, making the slab thickness at the capitals 15 1/2".

4) SEE SCHEDULE FOR TYPICAL COLUMN NOTES.

Figure 4: Column Reinforcing Detail from Cagley & Associates

	\sum	$\left \right\rangle$	\mathbb{N}	\mathbb{N}	\mathbb{N}	\mathbb{N}
MECH ROOM FLOOR						
ACH NOVE I LOON	$\langle \rangle$	$\overline{}$	$\langle \rangle$	$\left(\right)$	$\langle \rangle$	$\overline{}$
	IX.		X	X	IX.	IX.
MAIN ROOF	$\langle \rightarrow \rangle$	$\langle \dots \rangle$		$\langle \rangle$	$\langle \rangle$	
	\sim	24"x24" 4#11	24°x24° 4#11	24°x24° 4 # 11	24"x24" 4#11	24°x24 4#11
ELEVENTH ELOOP		#4®18"	#4®18"	#4@18*	#4018	#4 0 18
	\leftarrow	24 * x24*	24 * x24 *	24"x24"	24"x24"	24*x24
		4#11 #4⊜18*	4#11 ≝4⊛18*	4#11 #4@18*	4#11 #4018*	4#11 #4⊛18
TENTH FLOOR	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ $	11010	11010	11010	11010	11010
	\mathbb{N}	24"x24" 4#11	24"x24" 4#11	24 x24 4#11	24"x24" 4#11	24*x24 4#11
WHERE IS OND		#4®18	#4®18	#4@18	#4018°	#40018
NINIH FLOOR	\longleftrightarrow	24*x24*	24*x24*	24 x24	24"x24"	24*x24
	X	4#11	4#11 Kiesii	4#11	4#11	4#11
EGHTH FLOOR	$/ \setminus$	#4918	# 4®18	# 4018	#40918	# 4 9 18
	\setminus /	24*x24*	24*x24*	24 x24	24"x24"	24*x24
		#4@18	4#11 #4®18	4018"	#40018"	#4@18
SEVENTH FLOOR	\longleftrightarrow	21-21	21-21	25-25	28.28	21*-21
		24 x24 4#11	24 x24 4#11	24 x24 4#11	24 x24 8#11	24 x24 4#11
SIXTH FLOOR		#4®18"	#4®18"	#4@18"	#40018"	#40918'
	$\langle \rangle$	24*x24*	24*x24*	24 x24	24"x24"	24*x24
	IX.	4#11 ≝4⊜18"	4#11 ≝4⊛18°	4#11 #4@18"	12#11 #4018"	4#11 #4@18
PITH FLOOR	$\langle - \rangle$	1.010	1.0.10	1.0.0	1.010	,
0	\sim	24"x24" 4#11	24"x24" 4#11	24"x24" 4#11	24"x24" 12#11	24*x24 4#11
		#4®18	#4®18	# 4@18	#4018"	#40918
FOURIN FLOOR	\leftarrow	24*x24*	24*x24*	24 x24	24"x24"	24*x24
		4#11 Frei¢	4 1 11 Kienst	4#11 ##910*	12#11 4:e10 ^e	8#11
THIRD FLOOR	/	#+#10	#+#10	44810	#4010	#4810
	24*x24* 4#11	24*x24* 4#11	24" x24"	24"x24" 8#11	26"x26" 16#11	24*x24 8#11
	#4®18	#4@18	#4®18	#4@18	#40018"	#40918
SECOND FLOOR	24*x24*	24**24*	24° x24*	24"x24"	25 x25	24*x24
	4 # 11	8#11	8#11	8∉11	16#11	12#11
FIRST FLOOR	#4®18	#4®18	#4@18	#4@18"	#40018"	#40918
	24*x24*	24*x24*	24° x24°	24 x24	28"x28"	24*x24
	4#11 #4@18	8#11 #4@18	8#11 #4@18	12#11 #4@18	20#11 #4018"	12#11 #40918
GROUND FLOOR		<u> </u>			السب البرب	0.0
		$ \vee $	24 x24 12#11	$ \vee $	30"x30" 20#11	26°x26 16#11
BASEMENT FLOOR PTOP OF FOUNDATION	\wedge	$ \land $	#4®18	\wedge	#40 18	#4 9 18

Figure 5: Partial Column Schedule from Cagley & Associates

Matthew R Peyton

Floor System

The floor system for the Patient Tower is a 9.5" 2-way flat plate. For the ground floor through the 4th floor the slab is 5000 psi concrete with the remaining floors at 4000 psi concrete. The largest span for this flat plate is 29' in each direction with square bays. The flat plate system has both top and bottom steel reinforcing. The top steel placed at regions of negative moment is typical notated with a number of #5 bars. The bottom reinforcing is a 2-way mat of #5 bars at 12" on center. In the end bays of the slab, there are extra bottom bars added to handle the carry over moments for the interior span. On the 5th floor of the tower is the mechanical level, which increases the loading on the slab giving it a 10.5" concrete slab. See figure 7 below for details.

Figure 7: Two-way Flat Slab Detail from Cagley & Associates

Final Report Hospital Patient Tower Matthew R Peyton

Roof System

The roof system for the patient tower is designed with the same conditions of a typical floor, a 9.5" Twoway flat plate with mat and bar reinforcing detailed in the above section. The roof does have a few variations from a typical floor; the roof area that will support the mechanical penthouse has been increased to a 14" slab to support the extra weight of the equipment and there were supports added to the main slab to support the new helipad (Figure 8) for the tower.

Lateral System

The lateral system for the Hospital Patient Tower consists of seven 12" reinforced concrete shear walls. These walls are located in two shear wall cores, one core is around the elevators and the other is around the main stair case. The shear walls consist of 5000 psi concrete and were run continuously through the tower from the foundations up to the roof. This system of two shear wall cores resists lateral loads in both the northsouth and east-west direction based on the orientation of the wall. The towers gravity system is a concrete twoway flat plate which will also acts as a concrete moment frame giving it some resistance for the lateral forces. With the combined action of these two systems all of the lateral forces applied to this tower can be resisted. With both of these element types acting in conjunction there is no need for any additional lateral force resisting system. An Etabs model of the lateral system can be seen in figure 9.

Figure 9: Etabs model of the existing structural system

Design & Code Review

Design Codes and References

- International Building Code 2006 "International Code Council".
- ASCE 7 05 "Minimum Design loads for Buildings and Other Structures" American Society of

Civil Engineers.

- ACI 318-05 "Building Code Requirements for Structural Concrete" American Concrete Institute.
- ACI Manual of Concrete Practice.
- AISC "Manual of Steel Construction Allowable Stress Design".

Thesis Codes and References

- International Building Code 2006 "International Code Council".
- ASCE 7 10 "Minimum Design loads for Buildings and Other Structures" American Society of Civil Engineers.
- ACI 318-08 "Building Code Requirements for Structural Concrete" American Concrete Institute.

Deflection Criteria

Floor Deflection Criteria Typical Live load Deflection limited to L/360

Typical Total load Deflection limited to L/240

Lateral Drift Criteria Lateral building drift limited to H/400 Final Report Hospital Patient Tower Matthew R Peyton

Load Combinations

The load combinations used for the analysis are listed below. These combinations must be considered during design per ASCE7-10

1. 1.4D

- 2. 1.2D + 1.6L + 0.5(Lr or S or R)
- 3. 1.2D + 1.6(Lr or S or R) + (L or 0.5W)
- 4. 1.2D + 1.0W + L + 0.5(Lr or S or R)
- 5. 1.2D + 1.0E + L + 0.2S
- 6. 0.9D + 1.0W
- 7. 0.9D + 1.0E

Material Specifications

Materials	Grade	Strength		
Concrete				
Piles	-	f′ _c = 4,000 psi		
 Foundations 	-	f′ _c = 3,000 psi		
 Slab-on-grade 	-	f′ _c = 3,500 psi		
 Shear Walls 	-	f′ _c = 5,000 psi		
Columns	-	f′ _c = 5,000/7,000 psi		
 Floor Slabs 	-	f' _c = 4,000/5,000 psi		
W Flange Shapes	ASTM A992	F _y = 65,000 psi		
HSS Round	ASTM A53 grade B	F _y = 35,000 psi		
HSS Rectangular	ASTM A500 grade B	F _y = 46,000 psi		
Reinforcing bars	ASTM 615 grade 60	F _y = 60,000 psi		
Steel Decking	ASRM A653 SS Grade 33	F _v = 33,000 psi		

Table 1: Material Specifications

Gravity Loads

Loads for the Patient Tower were calculated from IBC 2006 in Reference with ASCE 7 -10. Loads are displayed below.

	Table 2 – Dead Loads	
Occupancy		Design Loads
Hollow Core Plank		60 psf
MEP Equipment		15 psf
Superimposed		20 psf
Topping Load		25 psf

Table 3 – Live Loads								
Occupancy	ASCE 7 – 10 Loads							
Corridors First floor	100 psf							
Hospitals								
Operating Rooms, Laboratories	60 psf							
Patient Rooms	40 psf							
• Corridors above 1 st floor	80 psf							
Helipads	60 psf							
Lobby	100 psf							
Roof with Garden	100 psf							

Table 4 – Snow Load						
Factor	Value					
Exposure Factor C _e	0.9					
Thermal Factor C _t	1.0					
Importance Factor Is	1.10					
Ground Snow Loads p _g	25 psf					
Flat Roof Snow Load p _f	17.3 psf ≈ 20 psf					

 $p_f = 0.7C_eC_tI_sp_g$

Lateral Loads

Wind Loads

According the IBC 2006, the wind analyses procedures to be used are in ASCE 7-10 chapter 27. To examine the lateral wind loads in both the North-south and East-west wind direction, the MWFRS Directional Procedure (Table 27.2-1). According to Figure 26.5-1B (ASCE7 -10) the design wind speed is 120 MPH for the location of the Patient Tower. For this Report, a few assumptions were made during the wind analyses procedures. One of the assumptions was that the building was completely regular from the ground to the roof elevation. On the first through third floors there is a glass atrium that extends passed the regular structure that has been excluded in this analysis. It was also assumed that the building was independent of the connected tower and that the wind was not impeded by any of the structures surrounding the Patient Tower. The four wind load cases in figure 10 below from ASCE 7 were all taken in to account during the analysis of the patient tower. The Details of these calculations can be found in Appendix II. Appendix II contains sample calculations, spreadsheets including all values used in this analysis and tables including all existing parameters. Tables 7 & 8 show the forces and shear for each wind force direction.

Table 5 - Wind Load Parameters						
Wind directionality factor (k_d)	0.85					
Exposure Category	В					
Topographic Factor (K _{zt})	1.0					
Gust Effect Factor (G)	0.85					
Enclosure classification	Partially					
	Enclosed					
Internal pressure coefficient (GC _{pi})	± 0.55					

Table 6 - Building Information					
Number of Stories	12				
Building Height (feet)	146				
N-S Building Length (feet)	191				
E-W Building Length (feet)	90				
L/B in N-S Direction	2.12				
L/B in E-W Direction	0.47				

Figure 10: ASCE 7- 10 Wind load cases

Matthew R Peyton

Table 7 – North/South Direction										
Floor	Height (ft)	Story Height (ft)	Kz	qz	Wind Wind	Pressure Lee	s (psf) Total	Story Force (Kips)	Story Shear (Kips)	Overturning moment (kips - Ft)
Roof	146	15	1.10	34.53	23.5	-14.7	38.2	52	0	0
11	131	11.5	1.07	33.43	22.7	-14.7	37.4	39	52	7520
10	119.5	11.5	1.04	32.52	22.1	-14.7	36.8	38	90	5072
9	108	11.5	1.01	31.64	21.5	-14.7	36.2	37	128	4550
8	96.5	11.5	0.98	30.69	20.9	-14.7	35.5	37	166	4045
7	85	11.5	0.95	29.61	20.1	-14.7	34.8	36	203	3550
6	73.5	11.5	0.90	28.32	19.3	-14.7	33.9	35	239	3062
5	59.5	14	0.85	26.57	18.1	-14.7	32.7	41	274	2581
4	48	11.5	0.80	25.06	17.0	-14.7	31.7	33	315	2454
3	36.5	11.5	0.74	23.15	15.7	-14.7	30.4	31	348	1576
2	25	11.5	0.66	20.68	14.1	-14.7	28.7	30	379	1149
1	13.5	13.5	0.57	17.86	12.1	-14.7	26.8	33	409	744
Ground	0	0	0.00	0.00	0.0	0.0	0.0	0	442	440
									Sum	36742

Table 8 - East/West Direction										
	Height	Story		Wind Pres		Pressure	ures (psf) Sto		Story	Overturning
Floor	(ft)	Height	Kz	qz	Wind	Lee	Total	Force	Shear	moment
		(ft)			E-W	E-W	E-W	(Kips)	(Kips)	(kips - Ft)
Roof	146	15	1.10	34.53	23.5	-7.8	31.2	90	0	0
11	131	11.5	1.07	33.43	22.7	-7.8	30.5	67	90	13070
10	119.5	11.5	1.04	32.52	22.1	-7.8	29.9	66	157	8776
9	108	11.5	1.01	31.64	21.5	-7.8	29.3	64	222	7844
8	96.5	11.5	0.98	30.69	20.9	-7.8	28.6	63	286	6947
7	85	11.5	0.95	29.61	20.1	-7.8	27.9	61	349	6070
6	73.5	11.5	0.90	28.32	19.3	-7.8	27.0	59	411	5209
5	59.5	14	0.85	26.57	18.1	-7.8	25.8	69	470	4363
4	48	11.5	0.80	25.06	17.0	-7.8	24.8	54	539	4110
3	36.5	11.5	0.74	23.15	15.7	-7.8	23.5	52	594	2616
2	25	11.5	0.66	20.68	14.1	-7.8	21.8	48	645	1885
1	13.5	13.5	0.57	17.86	12.1	-7.8	19.9	51	693	1199
Ground	0	0	0.00	0.00	0.00	0.00	0.00	0	745	693
									Sum	62782

Seismic Loads

In order to calculate the seismic loading of the Patient Tower, ASCE 7-10 was referenced. Chapters 11, 12, 20-22 were all used to find parameters, procedures and references to complete the analyses of the seismic loading. Located in the geotechnical report, the site classification was determined to be Class D for the Patient Tower in Virginia. All design parameters that were used in this analysis of the seismic loading of the Patient Tower can be found in Table 9. Sample seismic calculations along with spreadsheets containing total building calculations are also located in Appendix II. Table 10 includes a summary of the story forces as well as the story shears from the seismic analyses.

Table 9 - General	Table 9 - General Seismic Information											
Occupancy		III										
Site Class		D										
Seismic Design Category		В										
Short Period Spectral	Ss	13.5 % g										
Response												
Spectral Response (1 Sec.)	S ₁	5.5% g										
Maximum Short Period	S _{MS}	0.216										
Spectral Response												
Maximum Spectral	S _{M1}	0.132										
Response (1 Sec.)												
Design Short Spectral	S _{DS}	0.144										
Response												
Design Spectral Response	S _{D1}	0.088										
(1 Sec.)												
Response Modification	R	3.25										
Coefficient												
Seismic Response	Cs	0.0218										
Coefficient												
Effective Period	Т	0.84										

Matthew R Peyton

		Table 10) - Base Shea	ar and C	Overturnin	g Mome	ent Distribu	ition	
Floor	Height b (ft)	Story Height	Story Weight	h ^k	w *h ^k	C	Lateral Force F	Shear Force V	Moment M _x (Kins - ft)
	Π _χ (ττ)	(ft)	w _x (Kip)	T'X	W _X H _X	Cvx	(Kips)	(Kips)	(11)
Roof	146	15	2126	341	724074	0.16	107	0	0
11	131	11.5	2114	300	634196	0.14	94	107	15626
10	119.5	11.5	2114	269	569556	0.13	84	201	12280
9	108	11.5	2114	239	505967	0.12	75	285	10060
8	96.5	11.5	2130	210	446864	0.10	66	360	8077
7	85	11.5	2130	181	385211	0.09	57	426	6374
6	73.5	11.5	2130	153	324964	0.07	48	483	4840
5	59.5	14	2142	119	255225	0.06	38	531	3530
4	48	11.5	2154	93	199670	0.05	30	568	2245
3	36.5	11.5	2154	67	144925	0.03	21	598	1417
2	25	11.5	3218	43	139036	0.03	21	619	782
1	13.5	13.5	3232	21	67905	0.02	10	640	514
Ground	0	0	0	0	0	0.00	0	650	135
$\Sigma(w_x h_x^k) = 4,397,600$ $\Sigma F_x = Base Shear = 650 Kips$							rturning Mo	oment = 65,	.900 Kips - Ft

Proposal Problem Statement

The Patient Tower is currently a two – way flat plate reinforced concrete slab supported by reinforced concrete columns. This system is the main gravity load bearing system that transfers each floor load to the foundation of slab on grade and drilled piles. The tower's current lateral system is reinforced concrete shear cores. There are two cores located around the central stair case and the elevator shaft. The strength of concrete used in the shear walls is 5000 psi, with the gravity system using both 5000 and 7000 psi concrete.

The Patient Tower is an addition to an existing hospital campus to provide updated equipment and facilities for care while being integrally connected to the existing patient tower. The goal of this thesis is to decrease the overall cost of the new tower and to decrease the construction time while maintaining the functionality of the tower.

Problem Solution

In order to decrease the overall cost of the tower, decreasing the construction time and the overall building weight are the two main ways that this challenge is confronted. Changing the gravity system of the tower from a two-way concrete slab to a steel frame with hollow concrete plank should help reduce the weight of the structural system and the construction duration.

The new proposed floor system would be hollow core concrete plank ranging from 8" to 12" supported with W-shape steel beams. These planks would be placed in the web of the beam and not placed on top of it as is traditionally done. Since the planks and beams will be placed in conjunction with each other the floor system will be low in depth allowing for the Patient Tower to maintain its floor to floor heights. This will allow for a seamless connection to the existing tower. The current floor system depth is 9.5", giving the tower enough space in the ceiling cavity for all of the mechanical system. There should not be many issues with ceiling cavity space in the proposed new design. With this change in the floor system the columns for the tower would also need to be redesigned to account for the change in material and loading of the floor system. ASCE7-10 will be used to determine the correct floor loads for the tower as evaluated in Tech Report #2.

The lateral resisting system will remain the same as that in the original design, with the two shear cores surrounding the stairway and the elevator shaft. With the changes to the building weight it may be found that the lateral system is over designed with the new gravity system, but will be maintained during this assignment. If it is found that the shear walls are insufficient in the new design, they will be redesigned to carry the higher loads.

Breadth Topics

The change in the gravity resisting system from a two – way flat plate reinforced concrete slab to a steel frame with precast concrete plank decking will produce a change in the construction management of the project. While steel structural elements are prefabricated and have a longer lead time, we are trying to decrease the weight of the tower. This change would decrease the need for such a bearing ability of the foundations elements. With the faster erection time for steel shortening the length of construction, an overall cost reduction would be realized.

Since we are changing from a concrete gravity system to a steel system the acoustical criteria will need to be checked for areas of importance. In a hospital acoustics will be very important criteria that will need to be kept with in close tolerances to not affect the patients. With a concrete system this criteria is satisfied by the mass and rigidity of the system; whereas with a steel system these criteria will need to be checked. For this study, I would like to check the acoustical performance of the Intensive Care Unit (ICU). The ICU sits above the café that is open to the public so there is a concern that the noise will be carried and disrupting the ICU above. The Patient Tower uses the fifth floor to house the mechanical systems directly below the mechanical floor is the Neuro ICU floor. The acoustics will need to be check for the mechanical floor to make sure that the noise is not transferred to the ICU located below.

Redesigned Structural System

In the structural redesign of the Patient Tower, the structure was changed from a two-way flat plat concrete slab with two shear cores to a structural steel frame with precast composite plank and lateral "X" bracing. In the redesigned structure, the gravity loads were assumed to be the same as in the existing structure with the exception of the dead load which changed with the materials. Both the wind and seismic loads were determined using ASCE 07 - 10.

Columns

The columns for the steel frame were designed in accordance with the LRFD method and the AISC Steel Construction Manual. The columns are designed to resist only the gravity loads on the Patient Tower. The columns for the steel frame redesign are laid out to fit within the existing column layout with modifications to account for the changes in the floor system as well as the lateral system. The original column layout was square 29 foot bays in both the north – south and east – west directions. With the steel frame the column layout maintains the 29 foot bays in the east – west direction, but in the north – south direction the length of the bay was cut from 29 feet to 14.5 feet. The length of the north – south bays needed to be cut down for the redesign because the construction loads could not be supported by the pre-composite steel beams. A column lay out for the steel frame can be seen below in Figure 10. Since the Patient Tower has a very regular footprint the columns were designed in three different categories with included; interior, exterior and corner. Each of these categories has a different tributary area giving different loads at each level. The Columns for the Patient Tower were designed to be all W12 wide flanged steel with splices ever 2 or 4 stories. The wide flanges range from W12 x 120 on the ground floor to W12 x 40 at the roof level the column sizes for each floor can be seen below in Tables 11, 12 & 13. Detailed calculations for all of the columns can be found in Appendix I.

Table 11									
Interior	Column Sizing								
Floor	Column Size								
Roof	W12 x 50								
11	W12 x 50								
10	W12 x 50								
9	W12 x 50								
8	W12 x 79								
7	W12 x 79								
6	W12 x 79								
5	W12 x 79								
4	W12 x 120								
3	W12 x 120								
2	W12 x 120								
1	W12 x 120								

Table 12									
Corner	Column Sizing								
Floor	Column Size								
Roof	W12 x 40								
11	W12 x 40								
10	W12 x 40								
9	W12 x 40								
8	W12 x 40								
7	W12 x 40								
6	W12 x 40								
5	W12 x 40								
4	W12 x 53								
3	W12 x 53								
2	W12 x 53								
1	W12 x 53								

Та	Table 13									
Exterior	Column Sizing									
Floor	Column Size									
Roof	W12 x 40									
11	W12 x 40									
10	W12 x 40									
9	W12 x 40									
8	W12 x 53									
7	W12 x 53									
6	W12 x 53									
5	W12 x 53									
4	W12 x 72									
3	W12 x 72									
2	W12 x 72									
1	W12 x 72									

Matthew R Peyton

of **80**

Floor System

The floor system that is being used with this steel frame design is a composite steel and precast system from Girder Slab. This system utilizes modified wide flange steel beams coupled with precast hollow core plank to create a composite action between both of these elements. The modified wide flange is known as a D-Beam in the Girder Slab system (Figure 11), and the concrete plank will bear on the bottom flange of the D-Beam instead of on the top flange of a typical beam section. The modifications to the typical wide flange section

Figure 11: D-beam system from Girder-Slab

include a staggered cut that is placed down the web of a W14 x 61 cutting it in to two equal halves, Once the beam is cut, a Top bar is placed to act as the top flange that was removed in the cutting process. The Top bar is sizes so that it will replace the area of the top flange but will have a lesser width to allow the placement of the plank on the bottom flange. The specified sections that are needed for this design to carry the loads for the Patient Tower include an 8" x 4' precast concrete plank resting on a DB 9 x 46 with 5000psi grout generation the composite reaction. In this design, a two inch concrete topping was added to this system to allow for a more rigid system and to allow for an ease in the assembly of the floor covering. A detail for the construction of this system can be seen below in Figure 12.

Figure 12: D-beam section system from Girder-Slab

Final Report

Hospital Patient Tower

Matthew R Peyton

	Web 1	Included	Depth	Web	Paren	it Bean	1	
Designation	Weight	Avg. Area	đ	Thickness t _w	Size	a	b	Top Bar w x t
	lb/ft	in ²	in	in		in	in	in x in
DB 8 x 35	34.7	10.2	8	.340	W10 x 49	4	3	3 x 1
DB 8 x 37	36.7	10.8	8	.345	W12 x 53	2	5	3 x 1
DB 8 x 40	39.8	11.7	8	.340	W10 x 49	3	3.5	3 x 1.5
DB 8 x 42	41.8	12.3	8	.345	W12 x 53	1	5.5	3 x 1.5
DB 9 x 41	40.7	11.9	9.645	.375	W14 x 61	3.375	5.25	3 x 1
DB 9 x 46	45.8	13.4	9.645	.375	W14 x 61	2.375	5.75	3 x 1.5

D-Beam[®] Reference Calculator is Available on Website. www.girder-slab.com

Figure 13: D-beam properties from Girder-Slab

																									4H(C8 -	+ 2	
Table of sat	ie si	ipe	rim	pos	ed	ser	vice	e loa	ad (psf)	an	dc	amt	oers	(in	.)				2	in. I	Nor	mal	We	igh	t To	ppi	ing
Strand														Spa	n, ft			_										٦
Code	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
	489	445	394	340	294	256	224	197	173	153	135	119	105	93	82	68	56	45	36	26								
66-S	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.2	0.1	0.0	-0.0	-0.1	-0.2	-0.3								
	409	457	420	297	247	204	267	225	20.1	194	164	146	120	115	102	-0.0	-0.7	-0.9	-1.2	-1.4	24							-
76-5	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.2	02	01	-00	-01	-02							
10-5	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.1	0.0	-0.1	-0.2	-0.4	-0.5	-0.7	-0.9	-1.2	-1.4							
	492	451	414	384	357	333	310	293	274	245	219	196	177	159	143	126	110	95	82	70	59	49	40	32				
58-S	0.3	0.3	0.3	0.4	0.4	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.1	0.3	0.2	0.1	0.0	-0.1				
	0.3	0.3	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.4	0.3	0.3	0.3	0.2	0.1	-0.1	-0.2	-0.4	-0.6	-0.9	-1.2	-1.5	-1.8				
		463	426	393	366	342	319	299	282	267	251	239	216	195	177	158	140	124	110	97	84	73	62	53	44	36	28	
68-S		0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.7	0.7	0.6	0.5	0.4	0.2	0.1 -	-0.1	
		0.4	0.5	0.5	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.6	0.6	0.6	0.5	0.4	0.3	0.2	0.0	-0.2	-0.4	-0.6	-0.9	-1.2	-1.6 -	-2.0 -	-2.4	
70 C		4/2	435	402	3/5	348	325	305	266	2/3	257	245	232	220	207	100	16/	149	133	119	106	94	83	/3	64	55	40	38
10-5		0.5	0.5	0.0	0.0	0.7	0.7	0.8	0.9	0.9	1.0	1.0	1.0	1.1	1.1	0.7	0.7	0.6	0.4	0.3	0.1	-0.1	0.9	0.9	0.7	1.3	1.7	0.3
		10.0	0.0	0.0	- M. F	4.1	0.0	0.0	0.0	0.2	9.5	4.5	9.3	0.0	0.0	- M-1	w.4	0.0	10.00		100	- M. I. I.	10.00	- 0.0	M.2 1	- 1.40	-1.1	

Strength is based on strain compatibility; bottom tension is limited to $7.5\sqrt{f_c'}$; see pages 2–7 through 2–10 for explanation.

2-32

PCI Design Handbook/Sixth Edition First Printing/CD-ROM Edition

Figure 14: Hollow core plank tables from PCI

Lateral System

In the design of the lateral force resisting system, a system of "X" braces were used to resist resisting the wind and seismic loads, as well as, the building torsion that would be caused by this loading. These braces were placed along ten different lines of action within the floor plan of the Patient Tower. The layout of these braces can be found in Figure 16. The braces for the steel frame were able to be placed in the space of the existing shear cores with a few additions within existing partitions as to not disrupt the existing floor plan. For the design of these braces, a structural model of the building was constructed in Etabs to be used in the analysis. The loads for the lateral design were found during Technical Report III using ASCE 7-10 and can be found in the lateral loads section of this report. Once all of the loads and load cases were placed in to the Etabs model, an analysis was run with different configurations and locations of the bracing until a suitable combination was found. The "X" braces were designed to be HSS 10" x 12" x 0.5" sections used in tension to avoid issues with buckling. These sections were used in all of the braced frames for ease of construction and since the deflection limit was met without much extra capacity. Section views of each of the braced frames can be found in Figure 15, also addition information and calculations can be found in Appendix IV.

Matthew R Peyton

Figure 16: Braced frame locations

Matthew R Peyton

Figure 17: Detail for bracing connection to floor system

Controlling lateral loads

Upon evaluation of the ETABS output, it was determined that Wind Case 1 of Figure 10 above from ASCE 7-10 controls the proposed braced frames LFRS in the y-direction. In the x-direction seismic loads control the design of the braced frame LFRS. See Table 14 summarizing the output from Etabs for the four wind load cases and the seismic loads. Detailed calculations for the lateral load cases can be found in Appendix III.

			Table 14	- Lateral L	oad Cases		
			Base	Base	Torsional	Overturning	Overturning
Cases	Location	Load	Shear,	Shear,	Moment,	Moment,	Moment,
			V _x (k)	V _y (k)	M _z (ft-k)	M _x (ft-k)	M _v (ft-k)
Case 1	Base	WX	-441.6	0	230515.2	0	-437029
Case 1	Base	WY	0	-744.4	-851966	746575.2	0
Case 2	Base	WX	-332	0	119652	0	-329248
Case 2	Base	WY	0	-559	-831764	559398	0
Case 3	Base	WXY	-332	-559	-466472	559398	-329248
Case 4	Base	WXY	-248	-419	-453902	419822	-245568
Seismic	Base	QX	-649.9	0	373398.9	0	-783801
Seismic	Base	QY	0	-649.9	-790728	783800.6	0

Relative Stiffness

In order to calculate the shear and torsion that would be placed on each of the braced frames, the relative stiffness for each frame needed to be found. A unit load method was used for these calculations. A load of 100 kips was placed at the top of each frame separately to measure the deflection. Once a deflection has been found for the frame it is divided by the unit load placed to give the deflection in order to find the Story Stiffness, K_i. To find the Relative story stiffness the sum of K_i is needed for each level as seen in table 15 below. The detailed calculations can be found in Appendix III

$K_i = P/\Delta p$

The relative stiffness's for each frame can now be calculated using the formula below. Once the relative stiffness for each frame is found then center of rigidity torsion and shear can be calculated.

		Tabl	e 15 - Relat	tive Story S	tiffness, R _{iv}	y		
Level	Total Story Stiffness Kiutotal			Relative Stor R _{iy} = K _i	y Stiffness, R _{iy} _{iy} /K _{iy,total}			
	- iy,totai	Frame 1	Frame 2	Frame 3	Frame 4	Frame 5	Frame 6	∑R
Roof	18.50	0.143	0.143	0.134	0.134	0.222	0.222	1.0
11	20.77	0.143	0.143	0.134	0.134	0.223	0.223	1.0
10	24.37	0.143	0.143	0.134	0.134	0.223	0.223	1.0
9	28.36	0.143	0.143	0.134	0.134	0.223	0.223	1.0
8	33.70	0.143	0.143	0.134	0.134	0.223	0.223	1.0
7	41.16	0.143	0.143	0.134	0.134	0.223	0.223	1.0
6	51.96	0.143	0.143	0.134	0.134	0.224	0.224	1.0
5	73.64	0.143	0.143	0.134	0.134	0.223	0.223	1.0
4	104.09	0.141	0.141	0.135	0.135	0.223	0.223	1.0
3	160.36	0.142	0.142	0.136	0.136	0.223	0.223	1.0
2	288.33	0.145	0.145	0.139	0.139	0.217	0.217	1.0
1	600.00	0.167	0.167	0.167	0.167	0.167	0.167	1.0

$R_i = K_i/K_i$,total

Center of Mass and Center of Rigidity

With the addition of more shear walls in the steel redesign, new center of mass and rigidity calculations needed to be performed. Both of these calculations were determined by Etabs and by hand for comparison. The values for the center of mass and center of rigidity can be found in tables 16 & 17 below. In the comparisons there are some discrepancies due to the irregularity of the building shape at the north end that was assumed to regular for the hand calculations.

Table 16 - Center of Mass Etabs Vs. Hand Calculations (inch)											
X Center of Mass	X Center of Mass (Hand)	Y Center of Mass	Y Center of Mass (Hand)								
(Etabs)		(Etabs)									
522	522	1104	1145								

Table 17 - Center of Rigidity Etabs Vs. Hand Calculations (inch)										
X Center of Rigidity X Center of Rigidity Y Center of Rigidity Y Center of Rigi										
(Etabs)	(Hand)	(Etabs)	(Hand)							
542	502	1285	1280							

Torsion

When the center of rigidity and the center of mass are not at the same location, torsion is present in the structure. Eccentricity is the distance between the center of mass and the center of rigidity which allows that development of moments and torsional shear is then introduced as an additional force on the building.

For rigid diaphragms, two separate moments need to be taken into account when determining torsion in a building. Torsion in a rigid diaphragm is the sum of the inherent moment and the accidental moment. The accidental moment, M_{ta} , is due to the rigidity of the slab. The accidental moment takes into account an assumed displacement of the center of mass. The displacement is a distance equal to 5% of the center of mass dimension each way from the actual location perpendicular to the direction of the applied force. The inherent moment, M_{t} , is caused by the eccentricity between the center of rigidity and the center of mass. The lateral force exerted on the building at that level; times the eccentricity of the floor gives the inherent moment.

	т	able 18 - Overal	l Building	Torsion								
	North - South Direction											
Story	Lateral Force (k)	Factored Lateral Force (k)	COR- COM (ft)	M _t (Ft-k)	M _{ta} (ft-k)	M _{t,tot} (ft-k)						
Roof	52	82	1.6	132	371	503						
11	39	62	1.6	99	279	378						
10	38	61	1.6	97	274	372						
9	37	60	1.6	96	270	366						
8	37	59	1.6	94	265	359						
7	36	58	1.6	92	259	352						
6	35	56	1.6	90	253	343						
5	41	66	1.6	106	297	403						
4	33	53	1.6	84	236	320						
3	31	50	1.6	81	227	307						
2	30	48	1.6	76	214	290						
1	33	52	1.6	83	235	318						

	Table 19 - Overall Building Torsion							
	East - West Direction							
	Lateral	Factored	COR-	M_{t}	\mathbf{M}_{ta}	M _{t,tot}		
Story	Force (k)	Lateral Force	COM	(Ft-k)	(ft-k)	(ft-k)		
		(k)	(ft)					
Roof	90	143	15	2148	1368	3516		
11	67	107	15	1608	1024	2632		
10	66	105	15	1575	1003	2578		
9	64	103	15	1544	983	2527		
8	63	101	15	1510	961	2471		
7	61	98	15	1471	936	2407		
6	59	95	15	1425	907	2332		
5	5 69 111		15	1658	1056	2714		
4	54	87	15	1308	833	2141		
3	52	83	15	1239	789	2029		
2	48	77	15	1151	733	1883		
1	1 51 82		15	1232	785	2017		

Shear

In order to calculate the shear forces at each level of the patient tower, direct and torsional forces need to be accounted for. The combination of the two forces is the total shear that the building will be experiencing. Direct shear is related to the stiffness of each of the shear walls and there relative stiffness as compared to each of the walls. The torsional shear is caused by the variations in location of each wall from the center of mass.

Direct Shear

The lateral forces that are acting on the building must be distributed to each of the frame elements so that they can be transferred down the load paths. The story shear that is applied at each story of the building is then distributed to the shear elements found at each floor. Depending on the relative stiffness of each of the shear elements depends then on how much of the force at that story is distributed to the wall. The greater the stiffness of the shear element the greater the load the wall can receive. The direct shear that is applied to each wall can be seen below in table's 20 and 21. Detailed calculations of these values can also be found in Appendix III.

Matthew R Peyton

	Tab	ole 20 - St	ory Shear	, North-S	outh				
	Story	S	Story Shear Per Frame (Kips)						
Level	Force	Frame 7	Frame 8	Frame 9	Frame 10	Sum			
	(kips)	0.069	0.126	0.126	0.678	1.0			
Roof	52	4	6	6	35	52			
11	39	3	5	5	26	39			
10	38	3	5	5	26	38			
9	37	3	5	5	25	37			
8	37	3	5	5	25	37			
7	36	2	5	5	24	36			
6	35	2	4	4	24	35			
5	41	3	5	5	28	41			
4	33	2	4	4	22	33			
3	31	2	4	4	21	31			
2	30	2	4	4	20	30			
1	33	2	4	4	22	33			

	Table 21 - Story Shear, East-West							
	Story	Story Shear Per Frame (Kips)						
Level	Force	Frame 1	Frame 2	Frame 3	Frame 4	Frame 5	Frame 6	Sum
	(Kips)	0.145	0.145	0.137	0.137	0.218	0.218	1.0
Roof	90	13	13	12	12	19	19	90
11	67	10	10	9	9	15	15	67
10	66	10	10	9	9	14	14	66
9	64	9	9	9	9	14	14	64
8	63	9	9	9	9	14	14	63
7	61	9	9	8	8	13	13	61
6	59	9	9	8	8	13	13	59
5	69	10	10	9	9	15	15	69
4	54	8	8	7	7	12	12	54
3	52	7	7	7	7	11	11	52
2	48	7	7	7	7	10	10	48
1	51	7	7	7	7	11	11	51

Torsional Shear

Torsion Shear is created by distance of the wall element from the center of rigidity where the lateral force is acting. The shear walls within the building will have to resist a torsional shear force that will be distributed to them in the same way as the direct shear, where the greater the relative stiffness the greater the shear force on that wall. The torsional shear forces were determined for the shear walls can be found in table 22. Detailed calculations of how the torsional shear was calculated can be found in Appendix III.

				Table 22 - Tors	ional Shear			
		Factored Story Shear V _{tot} (k)	Relative Stiffness R _i	Distance From COM to COR (e) (in)	Distance from Wall _i to Origin (in)	Distance from Wall _i to COR d _i (in)	$(R_i)(d_i)^2$	Torsional Shear (k)
Wall 1	E-W	745	0.145	-181	348	-937	127103	29
Wall 2	E-W	745	0.145	-181	348	-937	127103	29
Wall 3	E-W	745	0.137	-181	834	-451	27955	13
Wall 4	E-W	745	0.137	-181	950	-335	15424	10
Wall 5	E-W	745	0.218	-181	1941	656	93723	-30
Wall 6	E-W	745	0.218	-181	2289	1004	219536	-46
Wall 7	N - S	442	0.069	-20	570	28	54	0
Wall 8	N - S	442	0.126	-20	84	-458	26448	1
Wall 9	N - S	442	0.126	-20	960	418	22030	-1
Wall 10	N - S	442	0.678	-20	492	-50	1696	0
					S	um	637348	

Overturning

Overturning issues in the foundation arise when the forces on the lateral elements are greater than the gravity weight that is applied to lateral element frame. The building foundation can also resist some of these forces with the capacity for soil bearing and pile friction forces. The Patient Towers foundations don't resist any up lift due to overturning because the uplift forces at the base of the braced frames are out weighted by the amount of gravity force applied to the columns. The largest negative force found in the foundation is 716k for an interior column which has a gravity load of 1210k. Since the existing gravity loading is greater than the uplift force created by overturning, the foundation will not need to be designed to resist this force.

Final Report Hospital Patient Tower Matthew R Peyton

Displacement

The displacement of the building should be limited as much as to not disturb the occupants inside the structure. Building displacement falls under the serviceability considerations and is related to the rigidity of each of the buildings braced frames. As a structure gets taller, the more important the displacement of the building becomes and a larger of a factor it will be. The displacement limitation for wind loading is an allowable displacement of $\Delta = L/400$. Seismic drift is limited to $\Delta = 0.015h_{sx}$.

Δ_{Limit} = 1722"/400 = 4.305"

The ETABS model also analyzed the story drift of the building. The drifts for the patient tower were taken both the North – South and East – West directions. The drift in the N/S direction is 2.72" and 4.02" in the E/W direction. The drifts in both directions are less than the 4.3" limitation. The ETABS modal analysis does analyze the drift and displacements with all the shear walls working together as a lateral resisting system.

_							
D	Diaphragm CM Displacements						
	Edit	View					
E.	Lunc	VICVV					
						Diaphragm CM [Displacements
[Story	Diaphragm	Load	UX	UY	UZ
		STORY12	D1	COMB1	-0.0026	-0.0145	0.0000
[STORY12	D1	COMB2	-0.0022	-0.0124	0.0000
		STORY12	D1	COMB3	0.7116	-0.0214	0.0000
		STORY12	D1	COMB4	-0.0140	1.8134	0.0000
		STORY12	D1	COMB5	1.4254	-0.0304	0.0000
		STORY12	D1	COMB6	-0.0258	3.6392	0.0000
		STORY12	D1	COMB7	2.7230	0.0153	0.0000
		STORY12	D1	COMB8	-0.0170	4.0237	0.0000
		STORY12	D1	COMB9	1.4260	-0.0273	0.0000
		STORY12	D1	COMB10	-0.0253	3.6423	0.0000
		STORY12	D1	COMB11	2.7235	0.0184	0.0000
		STORY12	D1	COMB12	-0.0164	4.0268	0.0000
		STORY12	D1	COMB13	-0.0022	-0.0124	0.0000
		CTODV44	D4	DEAD	0.0046	0.0004	0.0000

Figure 18: Diaphragm displacements from Etabs

Schedule Impacts

The existing design of the Patient Tower consists of a reinforced concrete frame with reinforced concrete slab and shear walls. The steps that need to be scheduled for the construction of this concrete design are as follows; form/rebar/pour the columns and walls, Form the deck, Lay the deck rebar, and pour the deck. Each of these tasks in the schedule has a different duration depending on the size and amount of material. In comparison, the steel system tasks are to erect each piece of steel as it is needed, then once enough of the steel sections are in place the concrete plank can be set in place. The schedule for the existing design will take 97 work days for the structure to be completed. In comparison the steel structural design will take just 24 workdays to construct. Using this number it is calculated that the steel design could be constructed 75% faster than the concrete design. With this decrease in length of construction, the tower would be able to be opened for operations about 3 and a half months earlier than the previous design. Detailed schedules for both system designs can be found in Appendix IV.

Table 23 - Structural Erection	on Time comparison (# days)
Concrete Frame with Shear walls	Steel Frame with Hollow core plank
97	24

Cost Impacts

Similar to the differences in construction time, these systems are also very different in cost as well. The original design of the Patient Tower with the reinforced concrete frame has a cheaper cost per square foot then the new design with steel. As can be seen in table 24 below the concrete frame is about nine dollars per square foot cheaper than the new design in steel, which equates to about a two million dollar increase in the base cost of the structure. The cost data was taken for RS means 2011 assemblies tables.

Table 24 - Systems Cost Comparison					
Concrete Frame with Shear walls	Steel Frame with Hollow core plank				
\$ 18/sf	\$ 27/sf				
\$ 4,000,000	\$ 6,000,000				

With the structure design changing from concrete to steel the total dead weight of the building decreased. The reinforced concrete design of the Patient Tower has a dead weight of approximately 44,000 kips where the weight of the steel design is about 30,000 kips. The difference in weight between the two designs gives a 32% reduction in building dead weight from the concrete structure to the steel structure as can be seen in table 25 below. With this 32% reduction in building weight the current foundation design consisting of drilled piles topped with a slab on grade should also be able to be decreased adding to the saving that have been gained by the steel design.
Table 25 - Total Building Weight Comparison (kips)								
Concrete Frame with Shear walls	Steel Frame with Hollow core plank							
44,000	30,000							

In comparing steel and concrete frame design of the Patient Tower, it is apparent that there are very distinct advantages and disadvantages for both types of construction. Subsequently comparing the schedule and cost of both of these systems, it seems as though the steel system has a slight advantage. While the steel system is more expensive per square foot by almost 65% it has major advantages in the construction time and dead weight; beating the concrete system by 75% and 32% respectively. With the faster construction time the steel system will allow the building to become operational sooner increasing revenue, and the lower dead weight will allow for a decrease in the bearing capacity of the foundation. The ability to open the hospital as much as 3 and a half months earlier using the steel design will be the controlling factor in the design bases on past average revenue data.

Breath Topic #2

Acoustical Analysis

There are two locations of the Patient Tower that need to be check for their acoustical performance. Both areas are Intensive Care Units within the tower. The general ICU is located above the Café and the other location is the Neuro ICU which is located below the Mechanical floor. Each of these locations would experience a different type of noise; The Café to ICU interaction would have Air-borne noise due to large volume of people and the Neuro ICU to Mechanical interaction would experience structural borne noise through mechanical vibration.

For this study, I would like to check the acoustical performance of the ICU. The ICU is located above the café that is open to the public. There is a concern that the noise will be carried and disrupt the ICU above. The redesigned Hollow core plank system will be complemented by an acoustical ceiling below as the original architectural design called for. With the use of this acoustical ceiling coupled with the Hollow core planks system that is topped with a 2 inch concrete topping the floor system will provide the necessary sound transition class (STC) rating required by the IBC for air-borne sound. For air-borne sound, the IBC requires that applicable walls, partitions and floor/ceiling assemblies have a sound transmission class (STC) of 50 when tested in a laboratory using ASTM E 90. The hollow core system that was used in the structural redesign provides a STC rating of 59 according to the PCI design handbook for the assembly used in the structural redesign.

Hospital Patient Tower

Matthew R Peyton

	Floor-Ceiling Systems		
8	8 in. hollow-core prestressed units, 57 psf	50	28
9	Assembly 8 with carpet and pad, 58 psf	50	73
10	8 in. hollow-core prestressed units with ½ in. wood block flooring adhered directly, 58 psf	51	47
11	Assembly 10 except ½ in. wood block flooring adhered to ½ in. sound-deadening board underlayment adhered to concrete, 60 psf	52	55
12	Assembly 11 with acoustical ceiling, 62 psf	59	61
13	Assembly 8 with quarry tile, 11/4 in. reinforced mortar bed with 0.4 in. nylon and carbon black spinerette matting, 76 psf	60	54
14	Assembly 13 with suspended 5/8 in. gypsum board ceiling with	61	62

Table 9.2.6.1 Airborne sound transmission loss (STC) and impact insulation class (IIC) ratings from tests of precast concrete assemblies

Figure 19: STC and IIC ratings from PCI

The Patient Tower uses the fifth floor to house the mechanical systems directly below the mechanical floor is the Neuro ICU floor. With all of the mechanical equipment sitting on floor/ceiling assemble this will create a structural borne sounds which is classified as an Impact insulations class (IIC). For structure-borne sound, the IBC requires floor/ceiling assemblies to have an impact insulation class (IIC) of 50 when tested in accordance with ASTM E 492. The floor/ceiling assembly used in the redesign for the Patient Tower has an IIC of 61 according to the PIC Handbook. With a higher rating given by the redesign system then is needed per the code the redesign system passes the requirement. All of the Mechanical equipment located on the 5th floor is supported by a four inch concrete housekeeping pad and vibration eliminating mounts. It is specified for the Patient Tower that all of the mechanical connections to the structure must be isolated by a vibration isolator to prevent and structural borne noise.

Design Goals

To evaluate the success of the redesigned structure design goals were set fourth at the beginning of this analysis. The goals are listed below with conclusions and arguments to support whether or not the design goals have been successfully achieved.

1) Design a steel structure that has little impact on the existing architecture of the Hospital Patient Tower.

This goal was achieved during the redesigning the structural system for the patient tower with a few modifications. The length of the bays had to be shortened in one direction and braced frames have to be added. Both of these elements were placed within existing partitions in order to not change the interior layout of the tower.

2) Maintain a minimal floor to floor height to maintain the proper connection to the existing tower.

This goal was achieved for the redesign of the Patient Tower with the use of the Girderslab system; it is a composite steel and precast hollow plank system that will allow this low floor to floor height while still maintaining enough space for the MEP equipment needed for a hospital. The success of this design will allow the connection between the new tower and the existing tower to be kept at every floor for easy transport of hospital personal and patients.

3) Design a steel structure to decreases the cost of the tower.

The steel redesign for the south patient tower didn't decrease the cost of the structure but it does have an effect on the overall cost of the tower. The steel structural cost was an increase over that of the original concrete design but there is a decrease in foundation and construction time for the steel structure that out weights the structural cost increase.

Conclusion

This thesis report was conducted in order to determine the feasibility for redesigning the Hospital Patient Tower as a steel frame structure. After taking in to account all of the pros and cons of the redesign and the existing systems, it seems that the redesign is just slightly more beneficial do to the decrease in erection time. Through this analysis a better understanding of both types of framing systems was gained as well as how each of these systems affects the rest of the building and its other systems.

For the depth of this thesis report, the structural systems for the hospital Patient Tower was redesigned as a composite precast hollow core plank and steel beam slab with steel columns. This was a redesign from its original cast-in-place two-way slab with concrete columns. The lateral system of the patient Tower was originally design as two cast-in-place concrete shear wall cores. For the redesign, the lateral system was converted to ten frames with "X" bracing. An Etabs model was used in the analysis of the lateral system redesign as well as to check member sizes and layouts. With the criteria that the Patient Tower must connect to an existing tower at every floor it was very critical that the floor to floor height were maintained. This criteria is what lead to the use of a Girder-Slab system for the floor slab. The Girder-Slab allowed for the floor to floor heights to be maintained while will also maintaining the large spans and minimize the effects on the architectural plans.

Two breadth studies were conducted along with the depth analysis to investigate how the structural redesign affects other aspects of the Patient Tower. The first breath topic is a construction management analysis which was performed to investigate and compare the cost and schedule of the existing concrete structure and the proposed steel frame structure. It was determined that the proposed steel frame system would be approximately 2 million dollars more than the existing concrete system. The construction schedule for both the steel and concrete system were also compared, it was found that the steel system could be constructed approximately 3 an a half months faster than the existing concrete system. Due to the decrease in weight of the steel frame compared to the concrete frame there is also the opportunity for a decrease in the bearing capacity of the foundation. Both of these systems have their pros and cons making them both very feasible options for the Patient Tower.

The Second Breadth study was an acoustical study to analyze the Sound Transmission Class and Impact Insulation Class (IIC) for the two Intensive Care Units (ICU) and there adjacent spaces. Both of the towers ICU units are located either above or below a potential noise source. The regular ICU is located above the towers café which will have a large amount of air borne sound and the Neuro ICU is located below the mechanical level on the fifth floor which will have high structural borne noise. These two spaces were check for their specific type of noise so that it does not disturb the occupants. In both cases the existing elements of the design were able to meet the criteria needed for the spaces.

This section of the Final Report is where the supplementary information for the Gravity System Redesign Calculations for the Hospital Patient Tower can be found.

1/20/2011	lator Reference	ΤοοΙ	Proje Job	ct Name: Hos Number: 1.00	pital Patient Tov 00	wer
Design Information	1		DBF	Properties		
Dead Load =	60 psf					1
Partition Load =	35 psf		DB S	ize>	DB 9 x 46 🔻	
Live Load =	80 psf		Steel	Section	Transfor	med Sectio
Topping Load =	25 psf		l _s	= 195 in ⁴	I _t =	356 in ⁴
DB Span =	14.5 ft		St	= 33.7 in ³	S _t =	68.6 in ³
Plank Span =	29 ft		Sb	= 50.8 in ³	S _b =	80.6 in ³
Grout f'c =	5000 psi		M _{scap}	= 84.0 ft-k		
Allowable $\Delta_{LL} = L /$	360		tw	= 0.375 in		
Allowable Δ_{LL} =	0.48 in		b	= 5.75 in		
Live Load Reduction	on (IBC 00/03/06)					
Include LLR	✓ (Check for Ye	s)				
% Reduction =	23.28 %					
Reduced Load =	61.4 pst					
Initial Load - Preco	omposite		04.0.61	01/		
	45.7 ft-K	<	84.0 ft-k	OK		
$\Delta_{\rm DL} =$	0.31 in					
	204					
Camber D-Beam [D-Beam Camber	Check for Yes	s)				
Camber D-Beam [D-Beam Camber]	(Check for Yes 1 in Osite	S)				
Camber D-Beam [D-Beam Camber] Total Load - Comp M _{sup} =	(Check for Ye: 1 in 92.5 ft-k 128.2 ft k	s)				
Camber D-Beam [D-Beam Camber] Total Load - Comp M _{sup} = M _{TL} =	(Check for Ye 1 in 0site 92.5 ft-k 138.2 ft-k 55.2 in ³	s)	ca c in ³	or		
Camber D-Beam [D-Beam Camber] Total Load - Comp M _{sup} = M _{TL} = S _{REQ} =	(Check for Ye 1 in <u>osite</u> 92.5 ft-k 138.2 ft-k 55.3 in ³ 2.24 in	s) <	68.6 in ³	<u>OK</u>		
$\begin{array}{c} \text{Camber D-Beam} \\ \text{D-Beam Camber} \\ \hline \\ $	(Check for Ye 1 in <u>osite</u> 92.5 ft-k 138.2 ft-k 55.3 in ³ 0.34 in 0.25 in	s) <	68.6 in ³ 0.48 in	<u>OK</u>		
$\begin{array}{l} \text{Camber D-Beam} \\ \text{D-Beam Camber} \end{array}$ $\begin{array}{l} \text{Total Load - Comp} \\ \text{M}_{sup} = \\ \text{M}_{TL} = \\ \text{S}_{REQ} = \\ \text{A}_{SUP} = \\ \text{A}_{TOT} = \end{array}$	(Check for Ye 1 in <u>osite</u> 92.5 ft-k 138.2 ft-k 55.3 in ³ 0.34 in 0.65 in	s) = L/ 2	68.6 in ³ 0.48 in 270	<u>ok</u> ok		
$\frac{\Delta Ratto - L \gamma}{Camber D-Beam}$ $\frac{D-Beam Camber}{D-Beam Camber}$ $\frac{Total Load - Comp}{M_{sup}}$ $\frac{M_{sup}}{M_{TL}} =$ $\frac{S_{REQ}}{\Delta_{SUP}} =$ $\frac{\Delta_{SUP}}{\Delta_{TOT}} =$ $\frac{Superimposed Com}{N value} =$	(Check for Ye 1 in 0site 92.5 ft-k 138.2 ft-k 55.3 in ³ 0.34 in 0.65 in mpressive Stress of 7 20	s) = L/ 2 <u>on Concrete</u>	68.6 in ³ 0.48 in 70	<u>ok</u>		
$\begin{array}{c} \text{Camber D-Beam} \\ \text{D-Beam Camber} \\ \hline \text{D-Beam Camber} \\ \hline \\ $	(Check for Ye (Check for Ye 92.5 ft-k 138.2 ft-k 55.3 in ³ 0.34 in 0.65 in mpressive Stress o 7.20 494 in ³	s) = L/ 2 o <u>n Concrete</u>	68.6 in ³ 0.48 in 770	<u>OK</u>		
$\begin{array}{c} \text{Camber D-Beam} \\ \text{D-Beam Camber} \\ \hline \text{D-Beam Camber} \\ \hline \\ $	(Check for Ye (Check for Ye 92.5 ft-k 138.2 ft-k 55.3 in ³ 0.34 in 0.65 in mpressive Stress of 7.20 494 in ³ 2.25 ksi	s) = L/ 2 o <u>n Concrete</u>	68.6 in ³ 0.48 in 270	<u>ок</u> <u>ок</u>		
$\begin{array}{c} \text{Camber D-Beam} \\ \text{D-Beam Camber} \\ \hline \text{D-Beam Camber} \\ \hline \\ $	(Check for Ye (Check for Ye 92.5 ft-k 138.2 ft-k 55.3 in ³ 0.34 in 0.65 in mpressive Stress o 7.20 494 in ³ 2.25 ksi 2.25 ksi	s) <i>= L/ 2</i> on Concrete	68.6 in ³ 0.48 in 270 2.25 ksi	<u>ок</u> ОК		
$\begin{array}{c} \text{Camber D-Beam} \\ \text{D-Beam Camber} \\ \hline \\ \text{D-Beam Camber} \\ \hline \\ \hline \\ \text{Total Load - Comp} \\ \\ \text{M}_{sup} = \\ \\ \text{M}_{TL} = \\ \\ \text{S}_{REQ} = \\ \\ \text{A}_{SUP} = \\ \\ \text{A}_{TOT} = \\ \hline \\ \hline \\ \hline \\ \text{Superimposed Com} \\ \hline \\ \text{N value} = \\ \\ \text{S}_{tc} = \\ \\ \text{f}_c = \\ \\ \text{F}_c = \\ \hline \end{array}$	(Check for Ye 1 in osite 92.5 ft-k 138.2 ft-k 55.3 in ³ 0.34 in 0.65 in mpressive Stress of 7.20 494 in ³ 2.25 ksi 2.25 ksi	s) = L/ 2 <u>on Concrete</u> >	68.6 in ³ 0.48 in 70 2.25 ksi	<u>ok</u> <u>ok</u>		
Camber D-Beam [D-Beam Camber] $\frac{Total Load - Comp}{M_{sup}} = M_{TL} = S_{REQ} = \Delta_{SUP} = \Delta_{TOT} = \frac{Superimposed Com}{N value} = S_{tc} = f_c = f_c = F_c = \frac{F_c}{T_c} = \frac{Bottom Flange Ter}{Starter}$	(Check for Ye 1 in osite 92.5 ft-k 138.2 ft-k 55.3 in ³ 0.34 in 0.65 in mpressive Stress of 7.20 494 in ³ 2.25 ksi 2.25 ksi 2.25 ksi	s) = L/ 2 <u>n Concrete</u> <u>Load)</u>	68.6 in ³ 0.48 in 70 2.25 ksi	<u>ok</u> ok		
Camber D-Beam [D-Beam Camber] $\frac{Total Load - Comp}{M_{sup}} = M_{TL} = S_{REQ} = \Delta_{SUP} = \Delta_{TOT} = \frac{Superimposed Com}{N value} = S_{tc} = f_c = $	(Check for Ye 1 in osite 92.5 ft-k 138.2 ft-k 55.3 in ³ 0.34 in 0.65 in mpressive Stress of 7.20 494 in ³ 2.25 ksi 2.25 ksi 2.25 ksi 2.26 ksi	s) = L/ 2 <u>n Concrete</u> <u>Load)</u>	68.6 in ³ 0.48 in 70 2.25 ksi	<u>ok</u> ok		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Check for Ye (Check for Ye 92.5 ft-k 138.2 ft-k 55.3 in ³ 0.34 in 0.65 in mpressive Stress of 7.20 494 in ³ 2.25 ksi 2.25 ksi 2.25 ksi 2.4.6 ksi 45 ksi	s) = L/ 2 o <u>n Concrete</u> > <u>Load)</u> >	68.6 in ³ 0.48 in 270 2.25 ksi 24.6 ksi	<u>ок</u> <u>ок</u>		
$\label{eq:state-linear} \begin{bmatrix} \Delta \ Ratto - L \ r \\ Camber D-Beam \ D-Beam \ Camber \end{bmatrix} \\ \hline D-Beam \ Camber \end{bmatrix} \\ \hline \begin{array}{c} \hline D-Beam \ Camber \end{bmatrix} \\ \hline \begin{array}{c} \hline D-Beam \ Camber \end{bmatrix} \\ \hline \begin{array}{c} \hline M_{sup} = \\ M_{TL} = \\ \\ S_{REQ} = \\ \Delta_{SUP} = \\ \Delta_{SUP} = \\ \Delta_{ToT} = \\ \end{array} \\ \hline \begin{array}{c} \hline Superimposed \ Cor \\ N \ value = \\ \\ S_{tc} = \\ \\ f_c = \\ \\ F_c = \\ \end{array} \\ \hline \begin{array}{c} \hline Bottom \ Flange \ Ter \\ \\ F_b = \\ \end{array} \\ \hline \begin{array}{c} \hline Shear \ Check \\ \end{array} \end{array}$	(Check for Ye 1 in osite 92.5 ft-k 138.2 ft-k 55.3 in ³ 0.34 in 0.65 in mpressive Stress o 7.20 494 in ³ 2.25 ksi 2.25 ksi 2.25 ksi 2.25 ksi 45 ksi 45 ksi	s) = L/ 2 <u>on Concrete</u> > <u>Load)</u>	68.6 in ³ 0.48 in 270 2.25 ksi 24.6 ksi	ok ok ok		
$\begin{array}{c} \text{Camber D-Beam} & [\\ \text{D-Beam Camber} \end{bmatrix} \\ \hline \text{D-Beam Camber} \end{bmatrix} \\ \hline \text{Total Load - Comp} \\ M_{\text{sup}} = \\ M_{\text{TL}} = \\ \\ S_{\text{REQ}} = \\ \Delta_{\text{SUP}} = \\ \Delta_{\text{SUP}} = \\ \Delta_{\text{ToT}} = \\ \hline \text{Superimposed Com} \\ \text{N value} = \\ \\ S_{\text{Ic}} = \\ \\ f_c = \\ \\ F_c = \\ \hline \text{Bottom Flange Ter} \\ \\ f_b = \\ \\ F_b = \\ \hline \end{array}$	 (Check for Ye 1 in osite 92.5 ft-k 138.2 ft-k 55.3 in³ 0.34 in 0.65 in mpressive Stress of 7.20 494 in³ 2.25 ksi 2.25 ksi 2.25 ksi 2.25 ksi 45 ksi 45 ksi 181 psf 	s) = L/ 2 <u>on Concrete</u> > <u>Load)</u> >	68.6 in ³ 0.48 in 270 2.25 ksi 24.6 ksi	ok ok ok		
$\begin{array}{c} \text{Camber D-Beam} & \begin{bmatrix} \\ \text{Camber D-Beam} & \\ \\ \text{D-Beam Camber} \end{bmatrix} \\ \hline \\ \hline \\ \text{Total Load - Comp} \\ \hline \\ \\ M_{\text{sup}} = \\ \\ M_{\text{TL}} = \\ \\ \\ S_{\text{REQ}} = \\ \\ \Delta_{\text{SUP}} = \\ \\ \Delta_{\text{SUP}} = \\ \\ \Delta_{\text{ToT}} = \\ \hline \\ \hline \\ \text{Superimposed Com} \\ \hline \\ \text{N value} = \\ \\ \\ S_{\text{Ic}} = \\ \\ \\ f_c = \\ \\ F_c = \\ \hline \\ F_c = \\ \hline \\ \hline \\ \hline \\ \text{Bottom Flange Terr} \\ \hline \\ f_b = \\ \\ \hline \\ F_b = \\ \hline \\ \hline \\ \hline \\ \text{Shear Check} \\ \hline \\ \hline \\ \text{Total Load} = \\ \\ \\ w = \\ \end{array}$	 (Check for Ye 1 in osite 92.5 ft-k 138.2 ft-k 55.3 in³ 0.34 in 0.65 in mpressive Stress of 7.20 494 in³ 2.25 ksi 2.25 ksi 2.25 ksi 2.25 ksi 45 ksi 45 ksi 181 psf 5.26 klf 	s) = L/ 2 <u>on Concrete</u> > <u>Load)</u> >	68.6 in ³ 0.48 in 270 2.25 ksi 24.6 ksi	ok ok ok		
$\begin{array}{c} \text{Camber D-Beam} & \begin{bmatrix} \\ \text{Camber D-Beam} & \\ \\ \text{D-Beam Camber} \end{bmatrix} \\ \hline \\ \hline \\ \text{Total Load - Comp} \\ \hline \\ \\ M_{\text{sup}} = \\ \\ M_{\text{TL}} = \\ \\ \\ S_{\text{REQ}} = \\ \\ \Delta_{\text{SUP}} = \\ \\ \Delta_{\text{SUP}} = \\ \\ \Delta_{\text{ToT}} = \\ \hline \\ \hline \\ \text{Superimposed Com} \\ \hline \\ \text{N value = } \\ \\ \\ S_{\text{Ic}} = \\ \\ \\ f_{c} = \\ \\ F_{c} = \\ \hline \\ F_{c} = \\ \hline \\ \hline \\ \hline \\ Formula of the set of the set$	 (Check for Ye 1 in osite 92.5 ft-k 138.2 ft-k 55.3 in³ 0.34 in 0.65 in mpressive Stress of 7.20 494 in³ 2.25 ksi 2.25 ksi 2.25 ksi 2.25 ksi 45 ksi 181 psf 5.26 klf 38.1 k 38.1 k 	s) = L/ 2 <u>on Concrete</u> > <u>Load)</u> >	68.6 in ³ 0.48 in 270 2.25 ksi 24.6 ksi	ok ok		

D-Beam® Calculator Reference Tool 1/25/2011

Design Information

Project Name: Hospital Patient Tower Mechanical floor Job Number: 1.000

DB Properties

Dead Load =	60 psf						-	
Partition Load =	15 psf			DB S	ze	> DB	9 x 46 🛛 🔻	
Live Load =	100 psf			Steel	Section	Lanana	Transfor	med Section
Topping Load =	25 psf			I,	= 195	in ⁴	I, =	356 in ⁴
DB Span =	14.5 ft			S,	= 33.7	in ³	S, =	68.6 in ³
Plank Span =	29 ft			S.	= 50.8	in ³	S. =	80.6 in ³
Grout f'c =	7000 nsi			M	= 84.0	ft-k	- 0	
Allowable $\Lambda_{11} = 1/2$	360			t	= 0.375	in		
Allowable $\Delta_{LL} =$	0.48 in			b	= 5.75	in		
	(150 00/00/00)							
Live Load Reduction	on (IBC 00/03/06)							
Include LLR		Yes)						
% Reduction = N	//A							
Reduced Load - N	/A							
Initial Load - Preco	mposite							
M _{DL} =	45.7 ft-k		<	84.0 ft-k	OK			
$\Delta_{DL} =$	0.31 in							
∆ Ratio = L /	569							
Camber D-Beam	(Check for	Yes)						
D-Beam Camber	1 in							
Total Load - Compo	osite							
M _{sup} =	106.7 ft-k							
м _т =	152.4 ft-k							
SPEC =	61.0 in ³		<	68.6 in ³	OK			
$\Delta_{\text{SUP}} =$	0.39 in		<	-0.48 in	oĸ			
$\Delta_{TOT} =$	0.70 in		= L/ 2	50				
(Cheada								
Superimposed Con	npressive Stress	s on Conc	rete					
N value =	6.08				4			
S _{tc} =	417 in [°]							
$f_c =$	3.07 ksi							
$F_c =$	3.15 ksi		>	3.07 ksi	<u>0K</u>			
Rottom Flance Ten	cion Stress (Tot	(heo I le						
f -	26.7 kei	ui Loadj						
	45 kei		>	26.7 ksi	OK			
г _ь =	40 (2)		-	20.1 131	<u>un</u>			
Shear Check								
Total Load =	200 psf							
w =	5.80 klf							
R = 1	42.1 k							
f _v =	19.5 ksi							
Fv =	20 ksi		>	19.5 ksi	OK			

Page 42 of 80

Hospital Patient Tower

	Web	Included	Depth	Web	Paren	t Bean	1	
Designation	Weight	Avg. Area	đ	Thickness t _w	Size	a	b	Top Ba w x t
	lb/ft	in ²	in	in		in	in	in x in
DB 8 x 35	34.7	10.2	8	.340	W10 x 49	4	3	3 x 1
DB 8 x 37	36.7	10.8	8	.345	W12 x 53	2	5	3 x 1
DB 8 x 40	39.8	11.7	8	.340	W10 x 49	3	3.5	3 x 1.5
DB 8 x 42	41.8	12.3	8	.345	W12 x 53	1	5.5	3 x 1.5
DB 9 x 41	40.7	11.9	9.645	.375	W14 x 61	3.375	5.25	3 x 1
DB 9 x 46	45.8	13.4	9.645	.375	W14 x 61	2.375	5.75	3 x 1.5

D-Beam® Reference Calculator is Available on Website. www.girder-slab.com

		S	Steel On	ly / Web		Transformed Section / Web Ignored					
Designation	Ix	C bot	C top	S bot	S top	Allowable Moment Fy=50 KSI f _b =0.6 Fy	Ix	C bot	C top	S bot	S top
	in ⁴	in	in	in ³	in ³	kft	in ⁴	in	in	in³	in ³
DB 8 x 35	102	2.80	5.20	36.5	19.7	49	279	4.16	4.40	67.1	63.5
DB 8 x 37	103	2.76	5.24	37.3	19.7	49	282	4.16	4.42	67.7	63.8
DB 8 x 40	122	3.39	4.61	36.1	26.5	66	289	4.26	4.30	67.9	67.2
DB 8 x 42	123	3.35	4.65	36.9	26.5	66	291	4.26	4.32	68.4	67.5
DB 9 x 41	159	3.12	6.51	51.0	24.4	61	332	4.27	5.35	77.7	62.1
DB 9 x 46	195	3.84	5.79	50.8	33.7	84	356	4.43	5.20	80.6	68.6

Hospital Patient Tower

Floor System Loads Plank OL = 60psf Superimposed = 35psf (MEP + Partitions) Live Load = 80psf Topping Load = 25 psf (installed after grout has cored) LLr Plank Span 29' D Beam Span 14.5 Allowable ALL = 1/360 = 14.5(12/360 = 0.483" Initial load pre composite Mol = (29)(0.06 kst)(14.5)2/8 = 45.7 ft. k < 84 ft. k = ().306 in 4 0.483" Total load Composite MSUR = 29' (0.061+0.035+0.025 KH) (14.5)2 / 8 = 92.2 ft. K M+ot = MSHO + MOL = 92.2 + 45.7 Ft.K = 137.9 ft.K Srey = (137.9 ft. K) (12 in/ft) / (0.6) (50 ksi) = 55.16 in3 6 68.6 in3 ∆LL = 5(29) (6,061+0,035+0.025 ksf) (14,5') 4 (1728 m3/ft*) (384) (356 in4) (29000 K/nª) = 0.338 in < 0.483 in V

Hospital Patient Tower

Matthew R Peyton

"AMPAD"

Check Compressive Stress on Concrete

$$N \text{ table } = \frac{E}{E} \frac{\text{streel}}{\text{streede}} = \frac{29000 \text{ Kai}}{\text{streede}(s + m)^3} = 7.19$$

$$S_{h_c} = 7.19((68.6) = 493.2 \text{ in}^3$$

$$f_c = M_{sup} (12^{10}M_{P}) / S_{h_c} = 92.2(12^{10}M_{P}) / 493.2 \text{ in}^2 = 2.243 \text{ Ke}:$$

$$F_c = 0.45(5000) / 1000 = 2.35 \text{ Ke}:$$

$$f_c \le F_c \qquad 2.24 \le 2.35 \text{ ke}:$$

$$f_c \le F_c \qquad 2.24 \le 2.35 \text{ ke}:$$

$$f_{0} = (45.7 \text{ kf}) (\frac{12 \text{ in}/P}{50.8 \text{ in}^3} + \frac{(92.2 \text{ FF})(12 \text{ in}/P}{80.6 \text{ in}^3} = 24.5 \text{ ks})$$

$$F_{0} = 0.9((50 \text{ ks})) = 45 \text{ ke}i > 24.5 \text{ ke}i$$

$$F_{0} = 0.9((50 \text{ ks})) = 45 \text{ ke}i > 24.5 \text{ ke}i$$

$$f_{0} = (60 + 35 + 61 + 25) = 1871 \text{ ps}F$$

$$M_{u} = (0.19)(29) \approx 5.25 \text{ k/f}$$

$$R = (5.45)(14.5)/_{0} = 38.1 \text{ k};$$

$$F_{v} = 38.1/(0.375)(5.75 \text{ in}) = 17.666 \text{ ks}:$$

$$F_{v} = 0.4(50 \text{ ke}i) = 20 \text{ ke}: > 17.66 \text{ ks}:$$

$$f_{v} = 0.4(50 \text{ ke}i) = 20 \text{ ke}: > 17.66 \text{ ks}:$$

Hospital Patient Tower

Edge Beams 1.20+1.6L Plank DL = 60 psf Superimposed = 35 psf (MEP+ Partions) Live load = 61 pet 1.2(120)+1.6(61) topping Louds = 25porf Wv = 242 psf Curtain Well = 25pefx 12'= 300 plf N= 242 × 15,5'= 3751 PLF Span = 14.5' AMPAD' Area = 14,5' × 15.5' = 224,75 sf = 3.8 klf + 0.3 klf = 4,1 KIF W= 4.1 KIF 14.5- $\frac{wL}{2} = \frac{4.1(14.5)}{2} = 30 \text{ k}$ 108 K.F+ WL2 = 4.1(14.52) = 108 Kift W12×22 \$Mpx = 110 k.f \$Vn = 96 K > 30 \ Check deflections $\Delta_{LL} = \frac{5 \ V_{LL} \ L^{4}}{384 \ E \ I_{\star}} = \frac{5 \ (0.95) (14.5)^{4} \ 1728}{384 \ (24000) (156 \ ...4)} = 0.208 \ \pm \frac{14.5(12)}{360} = 0.483 \ \checkmark$ $\Delta_{\text{HL}} = \frac{5(u_{\text{HL}})L^{4}}{384 \text{ EI}_{x}} = \frac{5(2.8)(14.5)^{4} 1728}{384(29000)(156 \text{ m}^{9})} = 0.62 \text{ in } \leq \frac{14.5(12)}{240} = 0.725 \text{ in } \checkmark$

Hospital Patient Tower

Hospital Patient Tower

				Interio	r Column Lo	ading			
Floor	Area (SF)	Load (PSF)	Column Load (lbs)	Self- Weight (Ibs)	Total Load (lbs)	Total Load (Kip)	Column Location	Column Size	φP _n (Kips)
Roof	420.5	150	63075	600	63675	64	11	W12 x 50	384
11	420.5	242	101761	600	166036	166	10	W12 x 50	384
10	420.5	242	101761	600	268397	268	9	W12 x 50	384
9	420.5	242	101761	600	370758	371	8	W12 x 50	384
8	420.5	242	101761	948	473467	473	7	W12 x 79	836
7	420.5	242	101761	948	576176	576	6	W12 x 79	836
6	420.5	242	101761	948	678885	679	5	W12 x 79	836
5	420.5	280	117740	948	797573	798	4	W12 x 79	836
4	420.5	242	101761	1440	900774	901	3	W12 x 120	1290
3	420.5	242	101761	1440	1003975	1004	2	W12 x 120	1290
2	420.5	242	101761	1440	1107176	1107	1	W12 x 120	1290
1	420.5	242	101761	1440	1210377	1210	Ground	W12 x 120	1290

				Corne	r Column	Loading				
	Area	Load	Column	Exterior	Self	Total	Total	Column	Column	φP _n
Floor	(SF)	(PSF)	Load	wall Load	Weight	Load	Load	Location	Size	(Kips)
	100			(201)	(201)		(KIP)			
Roof	106	150	15900	6375	480	22755	23	11	W12 x 40	280
11	106	242	25652	6375	480	55262	55	10	W12 x 40	280
10	106	242	25652	6375	480	87769	88	9	W12 x 40	280
9	106	242	25652	6375	480	120276	120	8	W12 x 40	280
8	106	242	25652	6375	480	152783	153	7	W12 x 40	280
7	106	242	25652	6375	480	185290	185	6	W12 x 40	280
6	106	242	25652	6375	480	217797	218	5	W12 x 40	280
5	106	280	29680	6375	480	254332	254	4	W12 x 40	280
4	106	242	25652	6375	636	286995	287	3	W12 x 53	477
3	106	242	25652	6375	636	319658	320	2	W12 x 53	477
2	106	242	25652	6375	636	352321	352	1	W12 x 53	477
1	106	242	25652	6375	636	384984	385	Ground	W12 x 53	477

Hospital Patient Tower

				Exte	rior Colum	n Loading				
Floor	Area (SF)	Load (PSF)	Column Load (lbs)	Exterior wall Load (lbs)	Self Weight (Ibs)	Total Load (lbs)	Total Load (Kip)	Column Location	Column Size	φP _n (Kips)
Roof	211	150	31650	4350	480	36480	36	11	W12 x 40	304
11	211	242	51062	4350	480	92372	92	10	W12 x 40	304
10	211	242	51062	4350	480	148264	148	9	W12 x 40	304
9	211	242	51062	4350	480	204156	204	8	W12 x 40	304
8	211	242	51062	4350	636	260204	260	7	W12 x 53	477
7	211	242	51062	4350	636	316252	316	6	W12 x 53	477
6	211	242	51062	4350	636	372300	372	5	W12 x 53	477
5	211	280	59080	4350	636	436366	436	4	W12 x 53	477
4	211	242	51062	4350	876	492654	493	3	W12 x 72	736
3	211	242	51062	4350	876	548942	549	2	W12 x 72	736
2	211	242	51062	4350	876	605230	605	1	W12 x 72	736
1	211	242	51062	4350	876	661518	662	Ground	W12 x 72	736

This section of the Final Report is where the supplementary information for the Wind and Seismic Calculations for the Hospital Patient Tower can be found.

-

Hospital Patient Tower

~		Wind Design	Patient tower
Occupar	rey cutago	ry III	
1 0 c	040	- 1 - 1 C - 1	A DI S IB ASIETIO
Wind of	sec. 0 (V) = 120	mpn (tram)	igure wasse to noce though
Vind 1	oud Parame	Hers	
KA = 0.	85 (table 20	6.6-1)	
Exercise	a Change	B (all with)	
Le la	1.0	D (arction 26.7.5)	
N 24 =	1.0		
G = 0	1.85 (sect. 24.1	1.1)	
Particly	enclosed Bu	Idings (table ac. 11-1)	
GCp	± 0.55		
Velocity	Presures expo	isure coefficient (ha)	Building Height 174:4"
Height (+)	Exposure		(Inclusting penthone)
0-15	0.57		
2.0	0.62		(1) / 1 (1)
25	0,66	Vertical Pre	as use (92) (cg. 27.3-1)
30	0.70		
40	0.76	92 = 0.0025	6 Kz Kar Ka V
60	0.85	0 0 00000	1 1. 26
70	0.89	1z=0.00256	K2 (1.0) (0.85) (120)
80	0.93	= 31.33 k	5a
90	0.96	*	
100	0,99	"See chart	For celeulated Values
120	1.04		
KO	1.13		
neu	1.17		

Hospital Patient Tower

	Wind Design	Patient tower
	Wind in East- West direction	
	Wind word Well: Cp = 0.8	
	Lee ward Wall : (48=21)=0.3	
	Side walls : Cp =-0.7	
	Design Wind Pressures (Eq. 27.4.1)	
	Windward wells	
2	$P = q_2 G C_p - q_1 (G C_{p_1})$	
AND	<u>N-5</u>	
	P = (0.85)(0.8) 9, = =	(0.68) 9, 2
	E-W	
	P = (0.85)(0.8) 9,2	(0.68) 92
	Leculard Wells	
\cap	$P = q_n + C_p - q_n + (+C_p)$	
	N-S	
	P= q, (0.85)(-0.5)-	= (-0.425)q,
	E.W.	
	$P = Q_{1}(0.85)(-0.3)$	= (-0,281) 9
-		

Hospital Patient Tower

Wind Design Patient Tower
Natural frequency N-S
building height 146' < 300' Y
Left =
$$\frac{g}{2}$$
 h.t. $\frac{27886}{146}$ = 191 × 9 = 764 > 146 Y
 $C_{w} = \frac{100}{A_{0}} \int_{11}^{2} \left(\frac{h}{h_{1}}\right)^{a} \frac{A}{1+0.35} \left(\frac{h}{D_{1}}\right)^{a}$
 $A_{0} = 17190$ ft^a
 $h = 146'$
 $h = 146'$
 $h_{0} = 385 (C_{w})^{0.5} h = 3.45 > 1$ Rigid Structure
Left = $\frac{13140}{146} = 90 \times 4 = \frac{E-W}{360} > 146 \times$
 $\ln c = 2.168 > 1$ Rigid Structure

Hospital Patient Tower

Matthew R Peyton

MINIMUM DESIGN LOADS

Hospital Patient Tower

Floor	Height (ft)	Story Height (ft)	Kz	qz	Wind Wind N-S	Pressur Lee N-S	es (psf) Total N-S	Story Force (Kips)	Story Shear (Kips)	Overturning moment (kips - Ft)
Roof	146	15	1.10	34.53	23.5	-14.7	38.2	52	0	0
11	131	11.5	1.07	33.43	22.7	-14.7	37.4	39	52	7520
10	119.5	11.5	1.04	32.52	22.1	-14.7	36.8	38	90	5072
9	108	11.5	1.01	31.64	21.5	-14.7	36.2	37	128	4550
8	96.5	11.5	0.98	30.69	20.9	-14.7	35.5	37	166	4045
7	85	11.5	0.95	29.61	20.1	-14.7	34.8	36	203	3550
6	73.5	11.5	0.90	28.32	19.3	-14.7	33.9	35	239	3062
5	59.5	14	0.85	26.57	18.1	-14.7	32.7	41	274	2581
4	48	11.5	0.80	25.06	17.0	-14.7	31.7	33	315	2454
3	36.5	11.5	0.74	23.15	15.7	-14.7	30.4	31	348	1576
2	25	11.5	0.66	20.68	14.1	-14.7	28.7	30	379	1149
1	13.5	13.5	0.57	17.86	12.1	-14.7	26.8	33	409	744
Ground	0	0	0.00	0.00	0.0	0.0	0.0	0	442	440
									Sum	36742

	Case 1 East - West Direction										
Floor	Height	Story	Kz	qz	Wind Pressures (psf)		Story	Story	Overturning		
	(ft)	Height			Wind	Lee	Total	Force	Shear	moment	
		(ft)			E-W	E-W	E-W	(Kips)	(Kips)	(kips - Ft)	
Roof	146	15	1.10	34.53	23.5	-7.8	31.2	90	0	0	
11	131	11.5	1.07	33.43	22.7	-7.8	30.5	67	90	13070	
10	119.5	11.5	1.04	32.52	22.1	-7.8	29.9	66	157	8776	
9	108	11.5	1.01	31.64	21.5	-7.8	29.3	64	222	7844	
8	96.5	11.5	0.98	30.69	20.9	-7.8	28.6	63	286	6947	
7	85	11.5	0.95	29.61	20.1	-7.8	27.9	61	349	6070	
6	73.5	11.5	0.90	28.32	19.3	-7.8	27.0	59	411	5209	
5	59.5	14	0.85	26.57	18.1	-7.8	25.8	69	470	4363	
4	48	11.5	0.80	25.06	17.0	-7.8	24.8	54	539	4110	
3	36.5	11.5	0.74	23.15	15.7	-7.8	23.5	52	594	2616	
2	25	11.5	0.66	20.68	14.1	-7.8	21.8	48	645	1885	
1	13.5	13.5	0.57	17.86	12.1	-7.8	19.9	51	693	1199	
Ground	0	0	0.00	0.00	0.00	0.00	0.00	0	745	693	
									Sum	62782	

Hospital Patient Tower

Ca	ase 2 (M _t	= 0.75((P _{wx} +P _{ix})I	B _x (e _x)) North - South	Direction	
Floor	0.75	$(P_{wx}+P_{lx})B_{x}$	$0.75(P_{wx}+P_{lx})B_x$	e _x	Mt
Roof	0.75	52	39	13.5	521
11	0.75	39	29	13.5	392
10	0.75	38	29	13.5	386
9	0.75	37	28	13.5	379
8	0.75	37	28	13.5	372
7	0.75	36	27	13.5	365
6	0.75	35	26	13.5	356
5	0.75	41	31	13.5	418
4	0.75	33	25	13.5	332
3	0.75	31	24	13.5	319
2	0.75	30	22	13.5	301
1	0.75	33	24	13.5	330

	Case 2 (I	$M_{t} = 0.75((P_{wy}+P_{l}))$	_y)B _y (e _y)) East - West [Direction	
Floor	0.75	(P _{wy} +P _{ly})B _y	0.75(P _{wy} +P _{ly})B _y	e _y	Mt
Roof	0.75	90	67	28.7	1924
11	0.75	67	50	28.7	1440
10	0.75	66	49	28.7	1410
9	0.75	64	48	28.7	1382
8	0.75	63	47	28.7	1352
7	0.75	61	46	28.7	1317
6	0.75	59	45	28.7	1276
5	0.75	69	52	28.7	1484
4	0.75	54	41	28.7	1171
3	0.75	52	39	28.7	1110
2	0.75	48	36	28.7	1030
1	0.75	51	39	28.7	1103

Hospital Patient Tower

	Case 3 (0.75(P _{wx} +P _{lx}))+(0.75(P _{wy} +P _{ly}))										
Floor	0.75	(P _{wx} +P _{lx})	0.75*(P _{wx} +P _{lx})	(P _{wy} +P _{iy})	0.75(P _{wy} +P _{ly})						
Roof	0.75	52	39	90	67						
11	0.75	39	29	67	50						
10	0.75	38	29	66	49						
9	0.75	37	28	64	48						
8	0.75	37	28	63	47						
7	0.75	36	27	61	46						
6	0.75	35	26	59	45						
5	0.75	41	31	69	52						
4	0.75	33	25	54	41						
3	0.75	31	24	52	39						
2	0.75	30	22	48	36						
1	0.75	33	24	51	39						

	Case 4 $M_t = 0.563(P_{wx}+P_{lx})B_x(e_x) + 0.563(P_{wy}+P_{ly})B_y(e_y)$											
Floor	0.563	$(P_{wx}+P_{lx})B_{x}$	$0.563(P_{wx}+P_{lx})B_x$	e _x	$(P_{wy}+P_{ly})B_{y}$	0.563(P _{wy} +P _{ly})B _y	eγ	Mt				
Roof	0.563	52	29	13.5	90	50	28.7	1033				
11	0.563	39	22	13.5	67	38	28.7	774				
10	0.563	38	21	13.5	66	37	28.7	759				
9	0.563	37	21	13.5	64	36	28.7	744				
8	0.563	37	21	13.5	63	35	28.7	729				
7	0.563	36	20	13.5	61	35	28.7	711				
6	0.563	35	20	13.5	59	33	28.7	689				
5	0.563	41	23	13.5	69	39	28.7	804				
4	0.563	33	18	13.5	54	31	28.7	635				
3	0.563	31	18	13.5	52	29	28.7	604				
2	0.563	30	17	13.5	48	27	28.7	563				
1	0.563	33	18	13.5	51	29	28.7	606				

Hospital Patient Tower

Seismic Design Patient Tower Seismic Loading Spectial response acceleration Ss = 13.5% g S,= 5.5% g (Fisure 22.1) S.te Class - D Fa = 1.6 (11.4-1) Steel ordonery Concentrically bruch frames $F_{v} = 2.4$ (11.4-2) R = 3.25 Ω = 2 (12.2-1) $S_{m_e} = F_a S_e = 1.6(0.135) = 0.216)$ CA = 3,25 Section 14.1 Sm, = FrS, = 2.4 (0.055) = 0.132] $S_{0S} = \frac{2}{3} S_{MS} = [0.144]$ (11.4-3) So1 = 35m, = [0.088] (11.4-4) $T = C_{+}h_{0}^{*} = 0.02(146')^{0.75} = 0.84$ (12.8-2) $T_0 = 0.2 \frac{S_{01}}{S_{04}} = 0.2 \frac{0.088}{0.144} = 0.122$ $T_s = \frac{S_{0,1}}{S_{0,1}} = \frac{0.088}{0.144} = 0.611$ TL = 8 For Periods $< T_0$ $S_{a} = S_{ps} \left(0.4 + 0.6 \frac{T}{T_0} \right) = 0.65$ >To, 2To Sa= Sos = 0.144 >Ts, <T, Sa= Soi = [0,105] > T_L S_G = $\frac{S_0, T_L}{T^2} = 0.997$

Hospital Patient Tower

Seismic Design Patient Tower
Seismic design (ategory
Occupancy category III Is=1.25
Ses= 0.144
$$\rightarrow$$
 Category A J used Catagory B
So1 = 0.088 \rightarrow Category B J (12.6.1.2)
Cs min $\begin{cases} S_{01} + (R_{fg}) = 0.088 \\ \pm (R_{fg}) = 0.088 \\ (0.84)(R_{10}) = 0.040 \\ \pm (R_{fg}) = 0.088 \\ (0.84)(R_{10}) = 0.048 \\ (R_{fg}) = 0.040 \\ (R_{fg}) = 0.55 \end{cases}$
Cs = 0.040
f = $\frac{1}{T} = \frac{1}{0.84} \pm 1.1471$ Rigid Diaphragin
Building Dead load Weight
W= 29805 K
Equivalent lateral force procedure (12.8)
V= C_{6}W = 0.040 (29805) = 1192. K
base Shear

Hospital Patient Tower

Tell	Seismic D	esign Patient Tower
Vertical	distribution (1	2.8,3)
Fx = Cv	×V k	$= 0.75 \pm 0.5 (T) \pm 1.17$
CVR = V	Jxhx Sec e	excel Sheet
2 Ir	∑ W, n ∑ W, h	^K = 724074
	<i>c</i> 1 <i>m</i>	
Deis	mic Story forces	+ Shear
Story Forena	Boof (146)	story Shear
9415	Floor 11 (131)	← 107×
84 K	Floor 10 (119.5)	← 201 ×
75 ^{- k}	Floor 9 (108')	← 285 K
66 K	Floor & (46.5')	← 360 °
57 <u>k</u>	Floor 7 (85')	492K
48 K	Floor 6 (73.5')	<53) ^K
38	Floor 0 (510)	4-568 K
30 *	Floor 7 (96)	<−− 598 ^{IS}
21	Floor 2 (25')	← 6(9 ¹⁶
21	Floor 1 (13.5')	€ 640 ×
10	Ground (0')	€50 K
	650 1	
	65,900 K.ft	

This section of the Final Report is where the supplementary information for the Lateral bracing Redesign Calculations for the Hospital Patient Tower can be found.

Hospital Patient Tower

Ŧ								
								-23
								-27 -27
			X				×	
								-8
, ,								-44
Ĺ,	×							-6

Hospital Patient Tower

Hospital Patient Tower

Hospital Patient Tower

Hospital Patient Tower

North – South Direction

Unit Load displacement											
Level		Arbitrary Unit Load, P									
	Frame 1	(kips)									
Roof	37.7	37.7	40.3	40.3	24.3	24.3	100				
11	33.7	33.7	35.9	35.9	21.6	21.6	100				
10	28.7	28.7	30.6	30.6	18.4	18.4	100				
9	24.7	24.7	26.3	26.3	15.8	15.8	100				
8	20.8	20.8	22.1	22.1	13.3	13.3	100				
7	17.0	17.0	18.1	18.1	10.9	10.9	100				
6	13.5	13.5	14.4	14.4	8.6	8.6	100				
5	9.5	9.5	10.1	10.1	6.1	6.1	100				
4	6.8	6.8	7.1	7.1	4.3	4.3	100				
3	4.4	4.4	4.6	4.6	2.8	2.8	100				
2	2.4	2.4	2.5	2.5	1.6	1.6	100				
1	1.0	1.0	1.0	1.0	1.0	1.0	100				

			Story St	iffness, K _{iy}			
Level	Arbitrary Unit Load, P			Story Sti K _{iy} =	ffness, K _i Ρ/Δ _p		
	(kips)	Frame 1	Frame 2	Frame 3	Frame 4	Frame 5	Frame 6
Roof	100	2.65	2.65	2.48	2.48	4.12	4.12
11	100	2.97	2.97	2.79	2.79	4.63	4.63
10	100	3.48	3.48	3.27	3.27	5.43	5.43
9	100	4.05	4.05	3.80	3.80	6.33	6.33
8	100	4.81	4.81	4.52	4.52	7.52	7.52
7	100	5.88	5.88	5.52	5.52	9.17	9.17
6	100	7.41	7.41	6.94	6.94	11.63	11.63
5	100	10.53	10.53	9.90	9.90	16.39	16.39
4	100	14.71	14.71	14.08	14.08	23.26	23.26
3	100	22.73	22.73	21.74	21.74	35.71	35.71
2	100	41.67	41.67	40.00	40.00	62.50	62.50
1	100	100.00	100.00	100.00	100.00	100.00	100.00

Hospital Patient Tower

	Relative Story Stiffness, R _{iy}											
Level	Total Story Stiffness		Relative Story Stiffness, R_i $R_{iy} = K_{iy}/K_{iy,total}$									
	K _{iy,total}	Frame 1	Frame 2	Frame 3	Frame 4	Frame 5	Frame 6	∑R				
Roof	18.50	0.143	0.143	0.134	0.134	0.222	0.222	1.0				
11	20.77	0.143	0.143	0.134	0.134	0.223	0.223	1.0				
10	24.37	0.143	0.143	0.134	0.134	0.223	0.223	1.0				
9	28.36	0.143	0.143	0.134	0.134	0.223	0.223	1.0				
8	33.70	0.143	0.143	0.134	0.134	0.223	0.223	1.0				
7	41.16	0.143	0.143	0.134	0.134	0.223	0.223	1.0				
6	51.96	0.143	0.143	0.134	0.134	0.224	0.224	1.0				
5	73.64	0.143	0.143	0.134	0.134	0.223	0.223	1.0				
4	104.09	0.141	0.141	0.135	0.135	0.223	0.223	1.0				
3	160.36	0.142	0.142	0.136	0.136	0.223	0.223	1.0				
2	288.33	0.145	0.145	0.139	0.139	0.217	0.217	1.0				
1	600.00	0.167	0.167	0.167	0.167	0.167	0.167	1.0				

Distance from Origin to Frame Y-Direction											
	Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6										
Distance 348 348 834 950 1941 2289											

	Center of Rigidity Y-direction											
Level	Relative Story Stiffness * Distance from origin, ∑R *d											
	Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6											
Roof	49.9 49.9 111.9 127.4 431.8 509.2											
11	49.7 49.7 111.9 127.4 432.8 510.3 128											
10	49.7 49.7 111.8 127.4 432.8 510.4											
9	49.7	1283										
8	49.6	1282										
7	49.7	49.7	111.9	127.5	432.6	510.2	1282					
6	49.6	49.6	111.5	127.0	434.4	512.3	1284					
5	49.7	49.7	112.1	127.7	432.1	509.6	1281					
4	49.2	49.2	112.8	128.5	433.6	511.4	1285					
3	49.3	49.3	113.1	128.8	432.3	509.8	1283					
2	50.3	50.3	115.7	131.8	420.7	496.2	1265					
1	58.0	58.0	139.0	158.3	323.5	381.5	1118					

East – West Direction

Unit Load displacement							
Level	East - West	Arbitrary Unit Load, P					
	Frame 7	Frame 8	Frame 9	Frame 10	(kips)		
Roof	139.4	74.9	74.9	11.9	100		
11	123.8	66.6	66.6	10.7	100		
10	104.6	56.4	56.4	9.1	100		
9	89.3	48.2	48.2	7.9	100		
8	74.6	40.4	40.4	6.7	100		
7	60.6	32.9	32.9	5.5	100		
6	47.4	25.8	25.8	4.4	100		
5	32.7	17.9	17.9	3.1	100		
4	22.6	12.5	12.5	2.3	100		
3	14.1	7.9	7.9	1.5	100		
2	7.3	4.1	4.1	1.0	100		
1	2.6	1.5	1.5	0.5	100		

Story Stiffness, K _{ix}							
Level	Arbitrary Unit Load, P (kips) ⁻	Story Stiffness, K _i K _{ix} = P/ Δ_p					
		Frame 7	Frame 8	Frame 9	Frame 10		
Roof	100	0.72	1.34	1.34	8.40		
11	100	0.81	1.50	1.50	9.35		
10	100	0.96	1.77	1.77	10.99		
9	100	1.12	2.07	2.07	12.66		
8	100	1.34	2.48	2.48	14.93		
7	100	1.65	3.04	3.04	18.18		
6	100	2.11	3.88	3.88	22.73		
5	100	3.06	5.59	5.59	32.26		
4	100	4.42	8.00	8.00	43.48		
3	100	7.09	12.66	12.66	66.67		
2	100	13.70	24.39	24.39	100.00		
1	100	38.46	66.67	66.67	200.00		

Hospital Patient Tower

Relative Story Stiffness, R _{ix}							
Level	Total Story Stiffness	Relative Story Stiffness, R_i $R_{ix} = K_{ix}/K_{ix,total}$					
	K _{iy,total}	Frame 7	Frame 8	Frame 9	Frame 10	∑R	
Roof	11.79	0.0608	0.1132	0.1132	0.7127	1.0	
11	13.16	0.0614	0.1141	0.1141	0.7104	1.0	
10	15.49	0.0617	0.1145	0.1145	0.7094	1.0	
9	17.93	0.0625	0.1157	0.1157	0.7061	1.0	
8	21.22	0.0632	0.1167	0.1167	0.7035	1.0	
7	25.91	0.0637	0.1173	0.1173	0.7017	1.0	
6	32.59	0.0647	0.1189	0.1189	0.6974	1.0	
5	46.49	0.0658	0.1202	0.1202	0.6939	1.0	
4	63.90	0.0692	0.1252	0.1252	0.6804	1.0	
3	99.08	0.0716	0.1278	0.1278	0.6729	1.0	
2	162.48	0.0843	0.1501	0.1501	0.6155	1.0	
1	371.79	0.1034	0.1793	0.1793	0.5379	1.0	

Distance from Origin to Frame X-Direction						
	Frame 7	Frame 8	Frame 9	Frame 10		
Distance	570	84	940	492		

Center of Rigidity x-direction						
Level	Relative S	∑R*d/∑R				
	Frame 7	Frame 8	Frame 9	Frame 10	Total	
Roof	34.7	9.5	106.4	350.6	501	
11	35.0	9.6	107.3	349.5	501	
10	35.2	9.6	107.6	349.0	501	
9	35.6	9.7	108.8	347.4	502	
8	36.0	9.8	109.7	346.1	502	
7	36.3	9.9	110.3	345.2	502	
6	36.9	10.0	111.8	343.1	502	
5	37.5	10.1	113.0	341.4	502	
4	39.5	10.5	117.7	334.7	502	
3	40.8	10.7	120.1	331.1	503	
2	48.1	12.6	141.1	302.8	505	
1	59.0	15.1	168.6	264.7	507	

This section of the Final Report is where the supplementary information for the Lateral bracing Redesign Calculations for the Hospital Patient Tower can be found.
Hospital Patient Tower

Matthew R Peyton

Task 🖕 Mode	Task Name 🔶	Duration 💂	Start 👻	Finish 👻
3	Column lines H-E L1-4	2 days	Tue 3/1/11	Wed 3/2/11
3	Column lines D-A L1-4	2 days	Thu 3/3/11	Fri 3/4/11
3	Beam Level 1	1 day	Mon 3/7/11	Mon 3/7/11
3	Beam Level 2	1 day	Tue 3/8/11	Tue 3/8/11
3	Beam Level 3	1 day	Wed 3/9/11	Wed 3/9/11
3	Beam Level 4	1 day	Thu 3/10/11	Thu 3/10/11
3	Plank Level 1	4 days	Tue 3/8/11	Fri 3/11/11
3	Plank Level 2	4 days	Fri 3/11/11	Wed 3/16/11
3	Plank Level 3	2.5 days	Mon 3/14/11	Wed 3/16/11
3	Plank Level 4	2.5 days	Wed 3/16/11	Fri 3/18/11
3	Column lines H-E L5-8	2 days	Fri 3/11/11	Mon 3/14/11
3	Column lines D-A L5-8	2 days	Tue 3/15/11	Wed 3/16/11
3	Beam Level 5	1 day	Thu 3/17/11	Thu 3/17/11
3	Beam Level 6	1 day	Fri 3/18/11	Fri 3/18/11
3	Beam Level 7	1 day	Mon 3/21/11	Mon 3/21/11
3	Beam Level 8	1 day	Tue 3/22/11	Tue 3/22/11
3	Plank Level 5	2.5 days	Fri 3/18/11	Tue 3/22/11
3	Plank Level 6	2.5 days	Tue 3/22/11	Thu 3/24/11
3	Plank Level 7	2.5 days	Thu 3/24/11	Mon 3/28/11
3	Plank Level 8	2.5 days	Mon 3/28/11	Wed 3/30/11
3	Column lines H-E L9-12	2 days	Wed 3/23/11	Thu 3/24/11
3	Column lines D-A L9-12	2 days	Fri 3/25/11	Mon 3/28/11
3	Beam Level 9	1 day	Tue 3/29/11	Tue 3/29/11
3	Beam Level 10	1 day	Wed 3/30/11	Wed 3/30/11
3	Beam Level 11	1 day	Thu 3/31/11	Thu 3/31/11
3	Beam Level 12	1 day	Fri 4/1/11	Fri 4/1/11
3	Plank Level 9	2.5 days	Wed 3/30/11	Fri 4/1/11
3	Plank Level 10	2.5 days	Fri 4/1/11	Tue 4/5/11
3	Plank Level 11	2.5 days	Tue 4/5/11	Thu 4/7/11
3	Plank Level 12	2.5 days	Thu 4/7/11	Mon 4/11/11
3	Fire Proofing 1	5 days	Tue 3/8/11	Mon 3/14/11
2	Fire Proofing 2	5 days	Wed 3/16/11	Tue 3/22/11
3	Fire Proofing 3	5 days	Mon 3/28/11	Fri 4/1/11

Hospital Patient Tower

Matthew R Peyton

TURNER CONSTRUCTION COMPANY	INOVA SOUTH PATIE	
A N N I D SAVANA	(Vistes) Remained Start Fister	
	Duration Duration	A version of the second s
SPT-P01120 INSTALL TEMP STORM SEWER	5 5 05-Dec-10 10-Dec-10	ID INGTALLE TEMPE STOPM SEWER
PLES FOUNDATION: BERKEL	37 37 13-Dao-10 03-Feb 11	THE BASE OUNDATION BERKEL
UNDERPINHING	37 37 13-Dao-10 03-Fab-11	THE OS Feb 11, UNDERPRIVEND
SPT-P01450 DIG UNDERPMINING SEQ 1	4 4 13-Dao-10 16-Dao-10	
SPT P01460 DIG UNDERPNNING SEQ 2	4 4 17-Dec-10 22-Dec-10	OISUNDERRNING SE02
SPT P0147 0 DIG UNDERPMINING SEQ 3	4 4 23-Dec-10 29-Dec-10	
SPT P01480 DIG UNDERPMNING SEQ 4	4 4 30-Dec-10 05-Jan-11	
SPT P01500 DRILL, GROUT AND TEST TIES	13 13 05-Jan-11 24-Jan-11	Deut, Gebur Avo Tést Ties
SPT POISIO INSTALL BRACING AT TUMMEL UNDERPINNING	3 3 25-Jun-11 27-Jan-11	
SPT-PO1520 EXCAVATION AT TUNNEL	5 5 28-Jan-11 03-Fab.11	D EXPANDINAT TURNEL
CIP CONCRETE: SOUTHLAND	41 41 04-Fob-11 01-Apr-11	Martin Constants and Constants South Links
SPT P01530 FIRVP FOOTINGSAT TUNNEL	10 10 04 Fob-11 17-Feb-11	
SPTFP01540 FORWINEBARTUNNEL 18" MAT SLAB	5 5 18-Feb-11 24-Feb-11	FORMAREBAR TÜNNEL 15" MAT SUAB
SPT P01550 POUR TUNNEL SLAB	1 1 25-Fob-11 25-Fob-11	
SPT P01560 FIR/PTUNNELWALLS SEO 1- 60	4 4 28-Fob-11 08-Mar-11	D FIRP TURINELINA LLS SEC 1- 60
SPT P01570 FIR/PTUNNELWALLS SEO 2- 60	4 4 04-Mar-11 00-Mar-11	B FIDE TIANNEY WALLS SED2- 50'
SPT P01580 FIRVPTUNNELWALLS SEO 3- 60	4 4 10-Mar-11 15-Mar-11	■ PRPFUNNELWALLE-SEO3-60
SPT P01500 FIR/PTUNNELWALLS SEO4- 60	4 4 15-Mar-11 21-Mar-11	Exercit Secod. 601
SPT P01600 FIR/PTUNNELWALLS SEO 5- 60	4 4 22-Mar-11 25-Mar-11	
SPT P01610 FORMREBARTUNNEL ROOF	4 4 28-Mar-11 S1-Mar-11	I FORMFREAM TUNNIEL ROOF
SPT P01620 POUR TUNNEL ROOF	1 1 01-Apr-11 01-Apr-11	POLIET TURNEL POOR
WATERPROORNS: PROSPECT	5 5 11-Apr-11 15-Apr-11	Statit, MATERPROFING; PROSPECT
SPT P01820 WATERPROOFING FOR TUNNELROOF	5 5 11-Apr-11 15-Apr-11	WATEBPRODING FOR TUNKEL ROOF
STRUCTURE	102 102 08-Mar-11 01-Dec-11	
NORI 7 ATION	CC CC CC Merrie 10 Auror 11	
SOL 350 NETALL HONOTELEV TO 5TH BLOOD	11-Survey 11-Terminal 00 00	
LEVEL 1	11-100-50 11-300-50 12 12	
POUR 1 - COLA TO DLVL 383.6	7 7 08-Mar-11 16-Mar-11	A 45 Mart11, PbuR 5- 00(A Td D LV 1 383.6
ALL TRADES	7 7 08-Mar-11 16-Mar-11	A (SMM/11, ALT THADES
SPT PO2440 FIRVP COLUMNISAND WALLS	3 3 08-Mar-11 10-Mar-11	E FIRP ODLUMASAND WALLS
SPTFP02460 FRAME DECK	2 2 10-Mar-11 11-Mar-11	E FRAMEDECK
SPT P02460 ELECTRICAL ROUGHIN	2 2 11-Mar-11 14-Mar-11	
SPT PO247 0 MECHANICAL ROUGH IN	2 2 11-Mar-11 14-Mar-11	
SPT.P02480 SETREBAR	2 2 14 Mar-11 15 Mar-11	
SPT P02400 POUR DECK	1 1 16-Mar-11 16-Mar-11	ROURDECK
POUR 2 - COL A TO C.5 - LVL 396.2	7 7 7 17-Mar-11 26-Mar-11	T 25.Mm-11, POUR 2- COLA TO C.S. LVL 396.2
ALLTRADES	7 7 7 17-Mar-11 26-Mar-11	T 25 Mbr-11, BLL TBADEB
SPT P02580 FIRIP COLUMNS AND WALLS	1 1 1 17-Mar-11 17-Mar-11	
SPT P02590 FRAME DECK	3 3 18-Mar-11 22-Mar-11	
SPT-P02400 ELECTRICAL ROUGHIN	3 3 21-Mar-11 23-Mar-11	
Remaining Lavelof Effort 🔤 Remaining Work 🔻 🔻 Summary	Master Schedule Up	ate Data Date: 05-Dec-10 Project ID: SPT-ML1
Actual Lavel of Effort Critical Remaining Work	20 H	Page 5 of 19
Actual Work + Microne	Loon on ubnow L	

TURNER CONSTRUCTION COMPANY	INOVA SOUTH	PATIENT	TOWER		Run Date: 09-06-10 01 3
Activity (D. Activity Name	Original Remaining Start	Phish Phish		1102	2012
	Duration Duration	E		O N O S Y MO SUC ISW	J F M April Mark June July A
SPT PO2410 MECHANICAL POUGHIN	3 21-Mar-1	1 23-Mar 11		HANCAL ROUGH N	
SPT POSSO FIRE PROTECTION - SET SLEEVESATSTA RS	1 1 22-Mar-1	1 22-Mar-11	-	PROTECTION - SET SLEEVES AT STAIRS	
SPT PO2420 SET RESAR	2 23-Mur-1	1 24-Mar-11			
SPT F02430 FOUR DECK	1 1 25-Mar-1	1 25-Mar-11	2		
POUR 3 - COL C 5 TO H - LVL 395.2	9 18-Mar-1	1 30-Mar-11		Mar-11 POUR 3 - GOL CE TO H - LVL 356.2	
ALL TRADES	p 0 18-Mar-1	1 30-Mar-11		War-11 ALL TRADES	
SPT-P02820 FIRVP-COLUMNSIAND WALLS	2 2 18-Mar-1	1 21-Mar-11		poulwesknowjaus	
SPT-P02030 FRAME DECK	4 4 23-Mar-1	1 28-Mar-11	Ē		
SPT P02940 ELECTRICAL ROUGH N	3 34-Mar-1	1 28-Mar-11		CTRICKL ROUGH IN	
SPT P02860 MECHANICAL PDUGH IN	3 24-Mar-1	1 28-Mar-11		HAMIQAL ROUGH N	
SPT P02560 SET REEMR	3 35-Mar-1	1 29-Mar-11			
SPT: P0257 0 POUR DECK	1 1 30-Mar-1	1 30-Mar-11	5		
POUR 4 - COL F TO J.5 - LVL 389.2	11 11 22-Mar-1	1 06-Apr-11	Ē	Apr-11, Pours 4 - pour group - Lvt 358.2	
ALL TRADES	11 11 22-Mar-1	1 06-Apr-11	Ť.	Apr-11, ALL TRADES	
SPT-P02260 FIRVP-COLUMNISAND WALLIS	3 3 22-Mur-1	1 24-Mar-11		scoupmus and wated i i i	
SPT P0227 0 FRAME DECK	4 4 20-Mar-1	1 01-Apr-11	E 	AME DECK	
SPT P02280 ELECTRICAL POUGHIN	3 30-Mar-1	1 01-Apr-11		SCTRIGAL ROUGH N	
SPT P02290 MECHANICAL RDUGHIN	3 30-Mar-1	1 01-Apr-11		CHANICAL FOURS IN	
SPT P02300 BET REBAR	3 31-Mur-1	1 04-Apr-11		T RE BAR	
SPT-P02910 POUR DECK	1 1 05.Apr-1	1 06-Apr-11		Nun Defect	
LEVEL 2	11 11 SI-Mar-1	1 14-Apr-11	L .	ika prahi, uziveraj 🕴 📜 !	
POUR 1 - COLA TO C.5	7 7 31-Mur-1	1 08-Apr-11	÷	kapenth, Polyan - Joou A Todus	
ALL TRADES	7 7 31-Mur-1	1 08-Apr-11		ALGER HI, AULTRADES	
SPT P02200 FIR'P COLUNNISAND WALLS	3 31-Mar-1	1 04-Apr-11	-	AP COLUMNSANDWALES	
SPT PO2210 FRAME DECK	3 01-Apr-1	1 05-Apr-11	•	WWE DECK	
SPT-P02220 ELECTRICAL ROUGH IN	3 3 04.Apr-1	1 06-Apr-11		ECTRICAL RIDUGIHIN	
SPT P02280 MECHANICAL POUGHIN	3 3 04.4pr-1	1 06-Apr-11		echanjicau poura-uni	
SPT P02240 SET REBAR	2 2 06.Apr-1	1 CV-Apr-11		ST REGAR	
SPT P02250 POUR DECK	1 1 08-Apr-1	1 08-Apr-11			
POUR 2- COL C 5 TO F	7 7 05.Apr-1	1 14-Apr-11		HAP-H1, POUR 2 COLCET DF	
ALLTRADES	7 7 05.Apr-1	1 14-Apr-11	•	HAPT-H1, ALL TRADES	
SPT FO2140 FIR'P COLUMNISAND WALLIS	3 3 06.Apr-1	1 08-Apr-11		RIP ODLUMUSAND WALLS	
SPT-PO2460 FPAME DECK	3 3 07-Apr-1	1 11-Apr-11		RAMEDECH I I I	
SPT P02660 ELECTRICAL ROUGH N	3 3 08-Apr-1	1 12-Apr-11		LECTRICAL POUGH IN	
SPT P02/7 0 MECHANICAL PDUGHIN	3 3 08-Apr-1	1 12-Apr-11		ECHANICAL ROUGH IN	
SPT PO2510 FIRE PROTECTION - SET SLEEVES AT STA IRS	1 11-Apr-1	1 11-Apr-11		REPROTECTION: SET SLEEVES AT STRAPS	
SPT PO2480 SET REBAR	2 2 12.Apr-1	1 13-Apr-11		ET RIBUR	
SPTF02100 FOUR DECK	1 14.Apr-1	1 14-Apr-11		POUR DECK	
LEVEL 3	13 11-Apr-1	1 27-Apr-11		27.4 pr-11, LEVEL 3	
POUR 1 - COL A TO D.5 - LVL 408 83	7 7 11-Apr-1	1 19-Apr-11	•	9440411, PDUR 1- COLATODS-LWL408.83	
ALL TRADES	7 7 11-Apr-1	1 19-Apr-11		9 April 11, ALL TRADES	
	Master C	the dute I ledete		Data Data: 05.0a.c-10	Project ID: SPT.NL1
Antoning Lawler Erect - Remaining work - summary		appndo appnals			
	Throug	gh 05-Dec-10		Page 6 of 19	

TURNER CONSTRUCTION COMPANY	INOVA SC	UTH PATI	ENT TOWER	Run Daix (\$CD 62-10 013
Activity ID Activity Name	Original Remaining	Start Finish		2012
	Duräton Duration			
SPT P02080 FIRVP COLUMNISAND WALLS	*	11-Apr-11 14-Apr-1		FRP GOLUNNS ANDW ALLS
SPTFP02000 FRAME DECK	*	12.Apr-11 15.Apr-1		FRAME DECK
SPT PO2000 ELECTRICAL POVGHIN	0	13-Apr-11 15-Apr-1	-	BLECTRICAL ROUGH-N
SPT PO2110 MECHANICAL ROUGH IN	0	13.Apr-11 15.Apr-1	 	WECHANICAL ROUGHTN
SPT PO2120 SET REBAR	0	14.Apr-11 18.Apr-1		SET REBAR
SPTP02130 POUR DECK	-	19-Apr-11 19-Apr-1		
POUR 2 - COL D 5 TO J 5 - LVL 403	L L	15-Apr-11 25-Apr-1		🖛 25A gr-11, POURE2- COL D.STO J.6- LVL 408
ALL TRADES	7 7 7	15-Apr-11 25-Apr-1	•	T 25Apr-11, ÅLL TÅADE\$
SPT-P02020 FIR/P COLUMNSAND WALLS		15-Apr-11 18-Apr-1	-	FIRIP COLUMNIS AND WALLS
SPT-P02030 FFAME DECK	•	18-Apr-11 21-Apr-1		
SPT P02040 ELECTRICAL ROUGH N	0	19-Apr-11 21-Apr-1		1 ELECTRICAL RODORHIN
SPT P02050 MECHANICAL POUGHIN	0	19-Apr-11 21-Apr-1		I MECHANICAL ROUGH N
SPT-P02060 SETREBAR	0	20-Apr-11 22-Apr-1	-	
SPT PO2500 FIRE PROTECTION - SET SLEEVES A TSTM IRS	-	20-Apr-11 20-Apr-1		I PIRE #ROTÉCTION - SET SLEEVES AT STAIRS
SPT-P02070 POURDECK	-	25-Apr-11 25-Apr-1	-	I POUR DECK
POUR 3 - COL D 5 TO H - LVL 408 83	L L	19-Apr-11 27-Apr-1		T 27-Ap-11, POUR 3- COL D.8 TO H- LM:408.85
ALL TRADES	7 7	19.Apr-11 27.Apr-1		TE 27.4 hr-11, ALL TPA DEB
SPT P01000 FIRVP COLUMNISAND WALLS	0 0	19-Apr-11 21-Apr-1		D FIRPODLUMNSANDWALLS
SPT P01980 FRAME DECK	•	20-Apr-11 25-Apr-1		
SPT PO2000 ELECTRICAL ROUGH N	0	21-Apr-11 25-Apr-1		DI ELECTRICA L ROUGH IN
SPTF02010 MECHANICAL FOUGHIN	0	21-Apr-11 25-Apr-1		D MECHANIDAL ROUGHIN
SPTF01070 SETREBAR	8	22.4pr-11 26.4pr-1		
SPT-P01960 POURDECK	-	27.Apr-11 27.Apr-1		
LEVEL 4	12 12	20-Apr-11 06-May-1		• 06-May-19, LENGEL 4
POUR 1 - COL LINES A TO D.5	L L	20-Apr-11 28-Apr-1	-	🛒 28.4pr.11, POUR1 - c/b. Unjes A (to Dis
ALL TRADES	7 7	20-Apr-11 28-Apr-1	-	A 28-April 1011 TRADE
SPT P03620 FIRVP COLUMNISAND WALLS	•	20-Apr-11 25-Apr-1		FIRE COLUMNS AND WALLS
SPT POSE10 FRAME DECK	*	21-Apr-11 26-Apr-1		E FRAVE DECK
SPT PO3530 ELECTRICAL ROUGH N	0	25-Apr-11 27-Apr-1	-	I ELECTRICAL RQUGH/N
SPT POSAD MECHANICAL POUGHIN	0	25-Apr-11 27-Apr-1	 	I MECHANNTAL ROUGHIN
SPT PO3600 SET REBAR	e4	26-Apr-11 27-Apr-1		
SPT P03400 POUR DECK	-	28-Apr-11 28-Apr-1		Foursdark
POUR 2 - COL LINES D.5 TO H	9 9	28-Apr-11 06-May-1	_	06/May-19, POBR 2- DOL UNES D.5 TOH
ALL TRADES	9	28-Apr-11 06-May-1		🖝 06-May-19, ALLI TRADE8
SPT-P03680 FIR/P COLUMNISAND WALLS	0	28-Apr-11 02-May-1	-	D FIRP COLUMNB ANDWALGS
SPT POSF 0 FRAME DECK	<i>o</i>	29-Apr-11 09-May-1		FRAME DECK
SPT P03600 ELECTRICAL ROUGH IN	0	02-May 11 04-May-1		ELECTRICAL ROUGH IN
SPT-P05600 MECHANICAL RDUGH IN	<i>о</i>	02-May 11 04-May-1		MECHANICAL ROUGHIN
SPT PO3660 SET REBAR	64	03-May-11 04-May-1		SETRESAR
SPT-P03560 POUR DECK	-	05-May-11 05-May-1		
LEVEL 5	=	29-Apr-11 13-May-1		T 15 Maryin, Level 9 1 1 1 1 1 1
Remaining Levelor Effort 🔲 Remaining Work	Ma Ma	ster Schedule U	pdate	Data Date: 05-Dec-10 Project ID: 5P1-M-1
Aorual Level of Errort Control Control Herraring Work		Through 05-Dec	10	Page 7 of 19
		and the second	2	

TURNER CONSTRUCTION COMPANY	INOVA SOL	JTH PATIE	NT TOWER		Run Date: 08-Dec-10 01 3
scivity ID Activity Name	Original Remaining 8 Durathin Duration	art Frish			nus 100 ani june ani 14
DOUR 4 . COLLINES A TO D.S.	7 7	LApr-11 00-Max-11		🖛 06.4a. ti. POLET / COL (NESA TO OS	
ALL TRADES	7 72	LApr-11 09-May-11		T ON MAY 11, ALL TRADES	
SPTFP03400 FIR/P COLUMNISAND WALLS	4 42	1.Apr-11 04-May-11		B FIFP COLUMNIS AND WALLS	
SPTF03500 FRAME DECK	*	3-May-11 05-May-11		h Fråmedeck	
SPT PO3410 ELECTRICAL ROUGHIN	8	4-May-11 06-May-11			
SPT PO3420 MECHANICAL ROUGH IN		4-May-11 06-May-11		II MECHANICAL FOUGH-N	
SPIFF03360 SETRESAR correctors point prov	01 -	May 11 06-May 11			
		Principal Contraction of the second of the s			
POUR 2 - COL LINES 0.5 TO H	5 C	11-jam-11 11-jam-1			
		Tripanet II-haw-			-+
OF FRUCKU FIRE CULUMNSANU WALLS		May 11 June 11			
OF FRUGADU FRAME LEUK	5 4	Here an Adverted			
SPTPOSAR ELECTRICAL POUGHIN		Indexe interest			
SPTF03480 MECHANICAL HOUGH-IN		Indexe interest			
OF FROM OF REAM		-May-11 12-May-11			
		A Linute 10 Mar 44			
LEVEL 6		IL-MAN-52 LL-MAN-4			
POUR 1 - COL LINES A TO D.5	7 2	D-May-11 18-May-11		18.Mai 11, ROUR 1. COL UNES A TO D.5	
ALL TRADES	7 7	D-May 11 18-May-11		🕶 18.Mat 11, ALL TRADES	
SPT-P03280 FIR/P COLUMNISAND WALLS	*	D-May-11 13-May-11		REAP COLUMNS ANDWALLS	
SPT-P03270 FRAME DECK	+	1-May-11 16-May-11			
SPTF PO3000 ELECTRICAL ROUGH N	3 11	3-May-11 17-May-11		etected foughting	
SPT-P03500 MECHAMICAL PDUGH-IN	8 8	3-May-11 17-May-11			
SPT-P03260 BETREEMR	2	5-May 11 17-May-11		I SET REBAR	
SPT-P03260 POUR DECK	1 1	3-May-11 18-May-11		I FOURDECK	
POUR 2 - COL LINES D.5 TO H	6 6 10	E-May-11 23-May-11		🛙 🖤 pasanap-11, Pounta- odu Linges di Tol	
ALL TRADES	6 6 10	5-May-11 23-May-11		T 23-Mg-11, ALL TPA DES	
SPT-P03340 FIR'P COLUMNSANDWALLS	3 10	5-May-11 18-May-11		D FIRIP SOLUSING AND WALLS	
SPT-P03330 FRAME DECK	3 13	7-May-11 19-May-11		I HAMEDECK	
SPT-P03560 ELECTRICAL ROUGHIN	3 10	3-May-11 20-May-11			
SPT-P03560 MECHANICAL POUGHIN	3 10	3-May-11 20-May-11		MECHANICALROUGHIN	
SPT P03S20 SET REBAR	2 2 10	D-May-11 20-May-11			
SPT PO3SIO POUR DECK		3-May-11 23-May-11		I POUR DECK	
LEVEL 7	10 10	P-May-11 01-Jun-11			
POUR 1 - COL LINES A TO D.5	1 2 1	Hay 11 27-May-11		27-Mg-11 POUR 1 - COLUMERA TO DE	
ALL TRADES	7 7	1.May 11 27-May-11			
SPT-P03160 FIR/P COLUMNISAND WALLS	*	P-May-11 24-May-11		FIRPECOLOMNS AND WALLS	
SPT PO3150 FRAME DECK	* *	D-May-11 25-May-11		I FRAMEDEDK	
SPT POS/7 0 ELECTRICAL ROUGH IN	8	t-May-11 26-May-11		ELECTRICAL ROUGH IN	
SPT PO3480 MECHANICAL POUGH IN	8	4-May-11 26-May-11		MECHANIDAL POUGHIN	
SPIF03140 SETREBAR	5	5-May-11 26-May-11		i liserfiebane i i i i i i i	
				Barto Data (D. 200	
Remaining Lovel of Ethot - Remaining Work	Mast	er Schedule Up	date		
	F	hourdh (6-Dac-1	-	Page 8 of 19	
		· · · · · · · · · · · · · · · · · · ·			

URNER CONSTRUCTION COMPANY	INOVA SOUTI	H PATIENT TOWE	Hun Date 16-Dac-10 til
ciulu () 4ctulu Nama	Original Bagalahad Start	Ekish Filip	202
	Duration Duration		F M Aphilway June July A S O N U U J F M Aphilway June July A
SPT-P03130 POUR DECK	1 1 27-May	11 27-May-11 :	
POUR 2 - COL LINES D.5 TO H	6 6 25-May	11 01-Jun-11	The or-Jun-11 Poults- GOL UNES DISTON
ALL TRADES	6 6 25-May	11 01-Jun-11	
SPT-P03220 FIRVP COLUMNISANDWALLS	3 3 25-May	11 27-May-11	I FIRE COLLANSAND MALLS
SPT-P03210 FRAME DECK	3 3 25-May	11 S0-May-11	
SPT P03230 ELECTRICAL ROUGHIN	3 3 27-May	11 St-May-11	
SPT P03240 MECHANICAL ROUGH IN	3 3 27-May	11 St-May-11	
SPT-P03200 SETREBAR	2 2 30-May	11 St-May-11	
SPT P03190 POUR DECK	1 1 01-Jun	11 D1-Jun-11	PO (R DECK
LEVEL 8	10 10 May	11 10-Jun-11	📥 Id-nur-ji, Levelus
POUR 1 - COL LINES A TO D.5	7 7 30-May	11 07-Jun-11	TOTAIN-11, POLIN 1- 2004 UNESA TO D.5
ALLTRADES	7 7 30-May	11 07-Jun-11	
SPT POSMO FIRIP COLUMNSAND WALLS	4 4 30-May	11 02-Jun-11	D FIRE COLUMNS AND WALLS
SPT-P03030 FRAME DECK	4 4 St-May	11 08-Jun-11	
SPT-P03060 ELECTRICAL ROUGHIN	3 3 02-Jun	11 06-Jun-11	
SPT P03060 MECHANICAL HOUGH IN	3 3 02-Jun	11 06-Jun-11	
SPT-PO3020 BETREEMR	2 2 03-Jun	11 06-Jun-11	
SPT-P03010 POUR DECK	1 1 07-Jun	11 07-Jun-11	- Pdun obck
POUR 2 - COL LINES D.5 TO H	6 6 03-Jun	11 10-Jun-11	TY 10-WIN-11, POUR 2-1COL UNESIDIS TO H
ALL TRADES	6 6 03-Jun	11 10-Jun-11	🖝 10-Mn-11, ALE TRADES
SPT P03100 FIR'P COLUMNISAND WALLS	3 3 03-Jun	11 GV-Jun-11	D FIRP OCULARISAND WALLS
SPT P03000 FRAME DECK	3 3 05-Jun	11 08-Jun-11	
SPT-P03110 ELECTRICAL ROUGHIN	3 3 07-Jun	11 00-Jun-11	
SPT POSI20 MECHANICAL POUGH IN	3 3 07-Jun	11 00-Jun-11	I MECHANICAL ROUGHIN
SPT-PO3060 SETRESAR	2 2 08-Jun	11 00-Jun-11	
SPT: PO307 0 POUR DECK	1 1 10-Jun	11 10-Jun-11	
LEVEL 9	10 10 08-Jun	11 21-Jun-11	
POUR 1 - COL LINES A TO D.5	7 7 08-Mm	11 16-Jun-11	T S-UNITI, POUR 1- COLLINESA TO DS
ALL TRADES	7 7 08-Jun	11 16-Jun-11	Te te-unit1, ALL TRADEB
SPT-P02620 FIR/P COLUMNSAND WALLS	4 4 08-340	11 13-Jun-11	
SPT-P02010 FRAME DECK	4 4 00-Jun	11 14-Jun-11	
SPT-P02080 ELECTRICAL ROUGHIN	3 3 13-Jun	11 15-Jun-11	Electrica (Roughtin)
SPT P02M0 MECHANICAL POUGHIN	3 3 13-Jun	11 15-Jun-11	I MECHANICAL ROUGH-N
SPT-P02900 SETREEMR	2 2 14 Jun	11 15-Jun-11	
SPT-P02600 POUR DECK	1 1 16-Jun	11 16-Jun-11	
POUR 2 - COL LINES D.5 TO H	6 6 14.Jun	11 21-Jun-11	TI-UN-11, FOUR &- COLUNES DISTOH
ALL TRADES	6 6 14 Jun	11 21-Jun-11	The St-Jup-11, ALL THADER
SPT-P02660 FIR/P COLUMNSAND WALLS	3 3 14 Jun	11 16-Jun-11	D KIRP GOLUMNISAND WALLS
SPT-P02070 FRAME DECK	3 3 15-Jun	11 17-Jun-11	
SPT-P02000 ELECTRICAL ROUGHIN	3 3 16-Jun	11 20-Jun-11	
SPTF03000 MECHAMCAL PDUGHIN	3 3 16-Jun	11 20-Jun-11	і і меснемися́ц пофизици і і і і і
			D-++-D+++-0
Remaining Levelof Effort 🔤 Remaining Work	Master	chedule Update	
Actual Law or care Actual Work Actual Work Machine Actual Work	Three	gh 06-Dec-10	Page 9 of 19

TURNER CONSTRUCTION COMPANY	INOVA SOUTI	H PATIENT TOW	ER Run Daw Octow-10 VIS
citvig ID Activity Name	Orignal Remaining Start	FNS	2012 2012
	Duration Duration		
SPTFP02560 SETREBAR	2 2 17.Jun	11 20-Jun-11	
SPTF02960 FOUR DECK	1 1 21-Jun	11 21-Jun-11	
LEVEL 10			
POUR 1 - COLLINES A TO D.5	7 7 17-dur	11 Z-Jun-11	The st-un-th Pourit - obt Linkes A to D5
ALL TRADES	7 7 17-Jun-	11 27-Jun 11	
SPTFP02600 FIR/P COLUMNISAND/WALLS	4 4 17-Jun-	11 22-Jun-11	
SPT:P02700 FRAME DECK	4 4 20-Jun	11 23-Jun-11	
SPT: PO2910 ELECTRICAL ROUGHIN	3 3 22-Jun-	11 24-Jun-11	I jeuegraicaju rojugikin
SPTFP03620 MECHAMICAL FIDUGHIN	3 3 22-Jun	11 24-Jun-11	
SPT.PO2780 SETREBAR	2 23-Jun-	11 24-Jun-11	I SET REBUC
SPT PO270 POUR DECK	1 1 27-Jun-	11 27-Jun-11	I POURDECK
POUR 2 - COLLINES D.5 TO H	6 6 23-Jun-	11 S0-Jun-11	A 30-Un-11 POUR 2- COLUMES DISTOH
ALL TRADES	6 6 23-Jun	11 30-Jun-11	
SPT PO2660 FIRIP COLUMNISAND WALLS	3 3 23-Jun	11 27-Jun-11	
SPT P02660 FRAME DECK	3 34.Mn	11 28-Jun-11	
SPT PO287 0 ELECTRICAL ROUGH N	3 3 27-Jun	11 29-Jun-11	
SPT PO2680 MECHANICAL HOUGH IN	3 27-Jun	11 29-Jun-11	k MEGHANIÇAL RÖUGIJIN
SPT PO2040 BET REBAR	2 2 29-Jun	11 29-Jun-11	E SETTERAT
SPT-P02630 POUR DECK	1 1 30-Jun	11 30-Jun-11	POUR DECK
LEVEL 11	10 10 28-Jun	11 12-04-11	12 militi (B)(B) 14
POUR 1 - COL LINES A TO D.5	7 7 28-Jun	11 07-JUL11	THE OFFICE POURT- COLUNES TO DE
ALL TRADES	7 7 28-Jun	11 07-20111	
SPT P02680 FIRVP COLUMNISAND WALLS	4 4 28-Jun	11 01-34-11	FIRE COLUMNS AND WALES
SPT PO2670 FRAME DECK	4 4 29-Jun	11 06-30-11	
SPT-PO2600 ELECTRICAL ROUGHIN	3 3 01-Jul-1	1 06-30-11	
SPT PO200 MECHANICAL POUGHIN	3 3 01-3041	1 06-34-11	D MECHANICAL ROUGHIN
SPT.PO2660 SETREBAR	2 2 05-04-1	1 06-30-11	
SPT PO2660 POUR DECK	1-107-200 1 1	1 07-Jul-11	1 POURDECK
POUR 2 - COLLINES D.5 TO H	6 6 05-041	1 12-04-11	12 12 10 10 10 10 10 10 10 10 10 10 10 10 10
ALL TRADES	6 6 05-34-1	1 12-0411	TTA 12-10119, ALL, TRADES
SPT PO2740 FIR/P COLUMNISAND WALLS	3 3 05-34-1	1 07-Jul-11	I FRIP COLUMNIS AND WALLS
SPT.PO2730 FRAME DECK	3 3 05-Jul-1	1 06-Jul-11	E FRAME DECK
SPT PO260 ELECTRICAL ROUGHIN	1-107-20 8 8	1 11-30-11	I I I ELECTRICAL FOUGHIN I I I I I I
SPT PO260 MECHANICAL POUGHIN	3 3 07-Jul-1	1 11-30-11	ID MECHANICALIROUGHINI
SPTFPO220 SETREBAR	2 2 08-04-1	1 11-30-11	BRTREBAR
SPT.P02710 POUR DECK	1 1 12-304-1	1 12-04-11	- Pour deck
ROOF	10 10 08-04-1	1 21-04-11	21-11(11, RDOF
POUR 1 - COLLINES A TO D.5	7 7 08-04-1	1 18-34-11	Part 18-Jul \$1, POUR 1; COLUNES A TO DIS
ALL TRADES	7 7 08-001	1 18-30-11	
SPT PO2530 FIRIP COLUMNISAND WALLS	4 4 08-301-1	1 13-Jul-11	
SPT PO2540 FRAME DECK	4 4 11-34-1	1 14-30-11	
Renation analog Ethot Banalogno Wick	Master S	chedule Undate	Data Dats: 05-Dec-10 Project ID: SPT-M-1
Actual Land of Filter Critical Remaining to the		anndo annoio	
Actual Work + Miletone	Throu	gh 06-Dec-10	Page 10 of 19

Matthew R Peyton

TURNER CONSTRUCTION COMPANY	INOVA SO	UTH PATIE	NT TOWER	Hun Date of	0ec-10 01.3
Activity ID Activity Name	Original Remaining Durating Duration	Start Frish			8 MT
SPT PO2550 ELECTRICAL POUGH N	<i>о</i> (13-Jul-11 15-Jul-11 10-10-00 00-10-00			
SPT FTUGSU MECHANICAL TUUGHIN SPT POST 0 SET REPART		13-00-11 15-00-11 14-04-11 15-04-11			
SPT.PO2580 POUR DECK		18-Jul-11 18-Jul-11		- HOURDECK	
POUR 2- COL LINES D.5 TO H	9	14-04-11 21-04-11		T pt-with, Ppurg- col, UNER DIS TO H	
ALL TRADES	9	14-36-11 21-30-11		THE DEST OF ALL TRADES	
SPT PO2500 FIR'P COLUMNISAND WALLS	8	14-304-11 18-304-11		E ETELE COUNTRAND WALLS	
SPT-P02600 FRAME DECK	0	15-Jul 11 19-Jul 11		D FRAME DECK	
SPTF02610 ELECTRICAL ROUGHIN	<i>o</i>	18-34-11 20-34-11		ELECTRICAL ROUGHLIN	
SPT P02620 MECHANICAL ROUGH IN	о 0	18-34-11 20-34-11		MECHANICAL ROUGH N	
SPT.PO2630 SETREEAR		19-Jul-11 20-Jul-11			
SPEPORAD POUNDER	- 1	21-30-11 Z1-30-11			
PENTHOUSE	10	11-065-72 11-00-01			
HIGH PENTHOUSE - COL LINES A TO B.2	9	19-34-11 26-34-11		I TY 25.00111, HIGH RENTHOUSE - COLUMESA TO B.2	
ALL TRADES	9	19-34-11 26-34-11			
SPT POS640 FIRVP COLUMNISAND WALLS	8	19-34-11 20-34-11		FIRP FOLLWANS AND WALLES	
SPTF03630 FRAME DECK	2	20-30-11 21-30-11		FRAME DECK	
SPT P03650 ELECTRICAL ROUGHIN	-	21-30-11 21-30-11		ELECTRICAL ROVEH-IN	
SPTF03660 MECHANICAL RDUGHIN	-	21-30-11 21-30-11		MECHANICAL ROUGH N	
SPIFP03620 SETREBAR	61	22-30-11 25-30-11		ET REBAR	
SPT PO3610 POUR DECK	-	25-Jul 11 26-Jul 11		Fourtbeck	
HIGH PENTHOUSE ROOF	92 92	27-Jul 11 27-Sep-11		27-Skp-11 HIGH PENTHOUSE RODE	
ALL TRADES	45 45	27-Jul 11 27-Sep-11			
SPT-P05700 FIR/P COLUMNSAND WALLS	-	27-34-11 27-34-11		FIRIP COLLIMNS AND TALLS	
SPT-P03600 FRAME DECK	61	28-34-11 29-34-11		FRAME DECK	
SPT P03710 ELECTRICAL ROUGH IN	-	29-34-11 29-34-11		ELECTRICAL ROUGHÀN	
SPT P03720 MECHANICAL ROUGH IN	-	29-34-11 29-34-11		MECHANICAL RDUGHIN	
SPT PO3680 SET REBAR	-	01-Aug-11 01-Aug-11		BETREBAR	
SPT-POS67 0 POURDECK	-	02-Aug-11 02-Aug-11		Polyn Detx	
SPT-P03750 CONCRETE STRUCTURE SUBSTANTIALLY COMPLETE	0	02-Aug-11		colorete structure questionnellere	
SPIFP03760 ERECTSTEELFRAMING	5	31-Aug-11 06-Sep-11			
SPT PO377 0 DETAIL STRUCTURE STEEL	5 5	07-Sep-11 13-Sep-11		I I GETAUSTRUCTURESTRE	
SPT P03760 INSTALL DECK	5	14-Sep-11 20-Sep-11			
SPT P03790 POUR SLAB ON METAL DECK	5	21-Sep-11 27-Sep-11		POUR SLAB ON METAL DECK	
HELIPAD	60 60	03-Sep-11 01-Dec-11		01.Das 11, HELPAD	
ALL TRADES	60 60	03-Sep-11 01-Dec-11		P P P P P P P P P P P P P P P P P P P	
SPT P03600 INSTALL POSTS FOR HEUPAD	9	03-Sep-11 15-Sep-11		INSTAUL POSTS FOR HELPAD	
SPT-P03610 INSTALL HELIPAD FRAMING	15 15	16-Sep-11 06-Oct 11			
SPTF P03520 INSTALL HELIPAD DECKAND WALKWAY	10	07-06111 20-06111		NSTALL HEUPAD DECK AND/W AU/WAY	
SPT PO3690 INSTALL ICE MELT SYSTEMOBLUGE SYSTEMS	15 15	21-061-11 10-Nov-11		i i i i metalijos verena karalijos verena karadima esta	(EMB
SPTFP03940 HELPAD TRIMAND TEST	15 16	11-Nov-11 01-Dec-11		i i i i i i meljead frim javo tjest i i	
Remaining Levelof Effort 🔲 — Remaining Work 🗸 🚽 8 um	mmary Ma	ster Schedule Up	late	Data Date: 05-Dec-10 Project ID: SPT-M-1	
Actual Level of Effort Critical Remaining Work		Through 00 Dec 1		Page 11 of 19	
Actual Work 🔶 🔶 Misstone		I Mougn up-Dec-I			

Matthew R Peyton